Dispersal dynamics of Cratoxylum cochinchinense population
-
摘要:目的
研究黄牛木Cratoxylum cochinchinens种群空间分布格局的形成机制和扩散规律,旨在促进黄牛木天然林的保护管理,推动其在珠三角地区生态脆弱地带绿化改造中的应用和推广。
方法采用样方调查法,选取广州市茶山和白云山以及台山市石花山的黄牛木典型样地,通过ArcGIS信息平台进行数字化处理,绘制种群空间分布点图和种群扩散动态分布图,分析黄牛木的种子传播方式和扩散动态,构建黄牛木种群的扩散速率(y)−胸径(x)的函数模型,预测种群扩散规律。
结果样地中的黄牛木总是在当地风向的下风向呈现聚集分布,并呈现扩散趋势;各样地种群冠层投影面积的增长量总是先增大后减小,不同样地的冠层扩散速率与平均胸径的函数模型均可为一元二次方程;单株黄牛木的冠幅增长量先增大后减小,其冠层扩散速率(y0)与胸径(x0)的函数模型为:y0=−0.013 5x02 + 0.310 6x0 +b 0.111 3 (R2=0.999,P=0.000)。
结论1)黄牛木种群靠风力扩散;2)种群冠层扩散速率先增大后减小,当种群扩散速率达到最大值时,冠层投影面积的增长量亦达到最大,当扩散速率为0时,冠层投影面积的增长量为0, 此时种群的生长受到限制;3)在人工经营下,当黄牛木的胸径为11.5 cm时,种群处于第6径阶,其冠幅扩散速率达到最大值1.90 m2/cm,此时应对种群进行适当间伐,以保证其最大效益;当黄牛木胸径达到23.4 cm时,种群处于第12径阶,种群的扩散受到阻碍,此时应进行疏伐以促进种群的更新生长。
Abstract:ObjectiveThe formation mechanism and diffusion pattern of the spatial distribution of Cratoxylum cochinchinense were studied to promote the protection and management of the natural forest and landscape construction and application in Pearl River Delta areas with poor ecological environment.
MethodWe used quadrat survey method and selected C. cochinchinense stands distributed in three different areas (Chashan area and Baiyun mountain in Guangzhou, and Shihua mountain in Taishan). The maps of population spatial distribution and diffusion dynamics were drawn using digital processing with ArcGIS platform. These maps were used for analyzing seed dispersal mode and dispersal dynamics. The function model of diffusion rate (y)-DBH (x) of the C. cochinchinense population was established for predicting population diffusion rate.
ResultThe C. cochinchinense trees always aggregated at the local downwind and showed a distribution trend in sampled areas. The growth in projection area of canopy always increased first and then decreased, and the functions of diffusion rate-DBH were univariate quadratic equations in different sampled areas. The growth of canopy of single C. cochinchinense tree first increased and then decreased, and the function model of diffusion rate(y0)-DBH(x0) for single C. cochinchinense tree was: y0=−0.013 5x02+0.310 6x0+0.111 3 (R2=0.999, P=0.000).
Conclusion1) C. cochinchinense population spread by wind. 2) The diffusion rate of canopy first increased and then decreased. The growth of canopy area increased to the peak when the diffusion rate reached the maximum, and the growth of canopy area was 0 when the diffusion rate was 0. At this time, diffusion of the population was limited. 3) Under artificial management, the diffusion rate of canopy reached the maximum of 1.90 m2/cm when tree DBH was 11.5 cm and the population belonged to the 6th diameter class. At this time thinning should be appropriately done to ensure the maximum benefits. The population diffusion was limited when tree DBH was 23.4 cm and the population belonged to the 12th diameter class. At this time thinning must be done to promote the growth and update of population.
-
Keywords:
- Cratoxylum cochinchinense /
- dispersal mode /
- diffusion of canopy /
- diffusion rate
-
中国是世界上水禽养殖第一大国,肉鸭产量占世界总产量的70%左右,养殖量平均每年以8%~10%的速度增加。目前水禽养殖业已经成为我国解决“三农”问题的支柱产业,也是现代畜牧业的重要组成部分。虽然水禽业发展迅速,但也存在诸多制约因素,尤其是疫病多发、频发严重阻碍水禽业的健康发展。其中,由鸭疫里默氏杆菌Riemerella anatipestifer引起的鸭疫里默氏杆菌病已经成为影响水禽业经济最严重的细菌性传染病,发病率可达100%,死亡率高于75%,耐过的病鸭生长发育受阻,成为僵鸭,造成巨大的经济损失[1]。一直以来主要采用疫苗免疫与药物治疗相结合的方式防控该病,但是防控的效果并不理想。一方面,鸭疫里默氏杆菌有21个血清型且各血清型间缺乏交叉保护性,而目前市售的灭活疫苗尚未涵盖所有流行的血清型,当出现疫苗株血清型以外的鸭疫里默氏杆菌感染时,现有的灭活疫苗不能起到保护作用,导致疫苗应用受限;另一方面,虽然鸭疫里默氏杆菌对大多数抗生素或化学合成药物较敏感,但是由于长期连续使用或不规范使用药物导致耐药性普遍存在[2],并且已经成为当前养殖业面临的最严峻问题。因此,本研究拟对广东地区鸭疫里默氏杆菌分离株进行血清型和耐药性调查及遗传进化关系研究,为开展针对性疫苗免疫预防及选用敏感药物治疗提供重要依据。
1. 材料与方法
1.1 材料
1.1.1 病料样本
病料于2015—2019年采自广东省清远、惠州、佛山等地区鸭场,采集疑似患鸭疫里默氏杆菌病病死鸭的脑、肝脏、心脏等组织,病料样本及分离鸭疫里默氏杆菌信息见表1,相同养殖场采集的样本分离的鸭疫里默氏杆菌记为1株。
表 1 采集样本与分离鸭疫里默氏杆菌信息Table 1. Collected samples and isolation information of Riemerella anatipestifer地区
District采集时间
Acquisition time养殖场数
Farm number样本数
Sample number分离株数
Isolate number代表性株数
Representative isolate number韶关 Shaoguan 2015−05—2019−04 19 69 15 5 河源 Heyuan 2015−07—2019−11 16 56 13 5 云浮 Yunfu 2015−09—2019−12 30 112 25 4 肇庆 Zhaoqing 2015−04—2019−10 17 63 12 4 清远 Qingyuan 2015−03—2019−12 23 91 19 5 佛山 Foshan 2015−05—2019−12 15 57 12 5 茂名 Maoming 2015−04—2019−11 20 80 16 5 惠州 Huizhou 2015−05—2019−11 23 80 17 5 汕头 Shantou 2015−03—2019−12 25 91 21 5 湛江 Zhanjiang 2015−05—2019−12 22 82 18 5 总计 Total 2015—2019 210 781 168 48 1.1.2 试剂与药品
改良胰蛋白胨大豆肉汤(TSB)培养基,含5%(φ)新生牛血清;胰酶大豆琼脂(TSA)培养基,含5%(φ)新生牛血清;麦康凯培养基按细菌学常规方法配制;革兰染色试剂和微量生化发酵管为广东环凯微生物科技有限公司产品;DNA marker DL 2000和Premix Taq为TaKaRa公司产品;药物标准品——氧氟沙星(Ofloxacin,OFX)、诺氟沙星(Norfloxacin,NOR)、盐酸四环素(Tetracycline hydrochloride,TCY)、头孢噻肟(Cefotaxime,CTX)、阿莫西林(Amoxicillin,AMX)、土霉素(Oxytetracycline,OXY)、盐酸金霉素(Chlortetracycline hydrochloride,CTE)、氨苄西林(Ampicillin,AMP)、庆大霉素(Gentamicin,GEN)、盐酸环丙沙星(Ciprofloxacin hydrochloride,CIP)、卡那霉素(Kanamycin,KAN)、大观霉素(Spectinomycin,STP)、磺胺嘧啶(Sulfadiazine,SDI)、磺胺二甲嘧啶(Sulfadimidine,SUL)和磺胺对甲氧嘧啶(Sulfametoxydiazine,SMD)为中国兽医药品监察所产品。
1.1.3 试验动物
1日龄商品代樱桃谷肉鸭,大约4000只,购自广州郊区某鸭场,未接种任何疫苗和抗血清,饲养于洁净环境中,至7~14日龄进行动物回归试验。
1.1.4 引物合成
引物参照文献[3]合成,以16S rRNA为扩增基因。引物( RA-F:5′-ACGTCATCCCACCTTCCTC-3′,RA-R:5′-GTTCAGACTAA GCGAAAG-3′ ) 由Invitrogen公司合成。
1.1.5 参考菌株
血清1型鸭疫里默氏杆菌参考株由广东省农科院动物卫生研究所寄生生物学研究室保存。
1.1.6 定型血清
1、2、3、4、5、6、7、8、9、10型鸭疫里默氏杆菌参考株定型血清,由广东省农科院动物卫生研究所寄生生物学研究室自制。
1.1.7 质控菌
大肠埃希菌ATCC25922购自中国兽医药品监察所。
1.2 方法
1.2.1 病原分离与鉴定
病原分离:将无菌采集的病死鸭的脑、肝脏、心脏组织,划线接种于TSA培养基平板和麦康凯培养基平板,于37 ℃厌氧培养24 h,挑取单个可疑菌落进行纯化培养。
革兰染色:挑取纯培养的单菌落进行革兰染色、镜检,观察细菌的形态和染色特性。
生化试验:将分离株的纯培养物接种于微量生化发酵管中,于37 ℃温箱中培养,观察结果。
PCR鉴定:以分离株的菌液为模板进行PCR扩增,PCR反应总体积为20 μL:Premix Taq 10 μL、上下游引物各1 μL、菌液1 μL、ddH2O 7 μL;反应条件:94 ℃预变性5 min,以94 ℃ 30 s、55 ℃ 30 s、72 ℃ 1 min进行30个循环,72 ℃延伸7 min;反应结束后,将PCR产物以10 g/L琼脂糖凝胶电泳进行检测,目的条带大小为325 bp。
动物致病性试验:将168株鸭疫里默氏杆菌分离株分别接种7~14日龄试验鸭,每株接种10只试验鸭,同时对照组设10只试验鸭,连续观察14 d;接种组腿部肌肉注射鸭疫里默氏杆菌分离株活菌1×108 CFU/mL,每只注射1 mL,对照组接种生理盐水,每只注射1 mL。隔离饲养,观察致病力,记录试验鸭发病及死亡情况;同时根据试验鸭死亡和发病情况在接种后1~5 d采集3~4只试验鸭的心脏和肝脏,分离鸭疫里默氏杆菌,并进行革兰染色、生化试验和PCR鉴定。
血清型鉴定:取洁净的载玻片分别滴加30 μL参考株阳性血清,再滴加30 μL分离株菌液,充分混匀,观察1~2 min,以出现清晰凝集者判为阳性,否则判为阴性。
1.2.2 最低抑菌浓度的测定
从168株鸭疫里默氏杆菌分离株中选择48株作为代表性菌株,进行最低抑菌浓度(Minimum inhibitory concentration,MIC)测定。代表性菌株选择依据:所选菌株均来自不同的规模化鸭场,每个鸭场养殖时间均在5年以上,每批肉鸭养殖规模均在20 000只以上,从韶关、河源、清远、佛山、茂名、惠州、汕头、湛江的规模化鸭场随机各选5株,从云浮和肇庆的规模化鸭场随机各选4株,总计48株。
抗菌药物贮存液的制备:将药物制成2 560 mg/L的原液,抗菌药物贮存液按照梯度稀释。
抗菌药物浓度范围:根据抗菌药物敏感性试验操作标准,药物浓度范围应包含耐药、中介和敏感分界点值,特殊情况除外。
接种物的制备:采用直接菌落悬液配制法,将培养18~24 h的鸭疫里默氏杆菌菌落调配成0.5麦氏比浊标准的悬液,再以TSB培养基按体积比1∶100稀释后备用;在15 min内接种完配制好的接种物,并取1份接种物在TSA平板上培养,以检查接种物的纯度。
抗菌药物稀释及菌液接种:以改良的试管两倍稀释法[4]测定鸭疫里默氏杆菌分离株的MIC,取14支灭菌试管为一排,除第1管加入1.6 mL TSB培养基外,其余每支试管均加入1 mL TSB培养基,于第1管中添加0.4 mL待测药物原液并混匀,吸取1 mL加入第2管,混匀后再吸取1 mL至第3管,如此连续倍比稀释至第12管,混匀后吸取1 mL弃掉,第13管为不加药物的阳性对照,第14管为不加药物和菌液、只加生理盐水的阴性对照;向第1~13管中各加入1 mL稀释菌液,此时第1~12管药物终质量浓度分别为256、128、64、32、16、8、4、2、1、0.5、0.25、0.125 mg/L。
培养:将接种后的试管置于37 ℃温箱中培养22~24 h。
结果判断:在阳性对照和阴性对照成立且质控菌株的MIC处于质控范围的情况下,肉眼可见澄清的最低药物浓度管即为测试菌株的MIC。
药物敏感性判定:根据标准[4-5]判断药物耐药、敏感和中介。
1.2.3 全基因组序列特征分析与核心基因组进化树的构建
基因组DNA文库的构建与序列测定:使用天根细菌基因组DNA提取试剂盒,按照操作说明,提取鸭疫里默氏杆菌分离株的基因组DNA;通过浓度测定和琼脂糖凝胶电泳,初步质检合格后,构建Illumina(250 bp)文库,利用Illumina Novaseq 6000平台进行测序,下机数据经质控和去除接头后运用SPAdes v3.6.2对原始数据进行拼接[6],拼接后的数据使用Quast软件进行质控[7]。
序列特征分析。耐药基因分析:将拼接好的测序结果上传至CGE的ResFinder4.1数据库[8]以分析菌株所携带的耐药基因(ARGs)( https://cge.cbs.dtu.dk/services/ResFinder/);ST分型:将拼接好的测序结果上传至多位点序列分型(Multi-locus sequence typing, MLST)数据库以分析菌株所属的ST型( https://cge.cbs.dtu.dk/services/MLST/)。
构建核心基因组进化树:从NCBI Genome下载数据库中全部共计59株鸭疫里默氏杆菌的全基因组序列,以标准菌株ATCC 11845(NCBI登录号:GCA_000252855.1)作为参考菌株,利用Parsnp软件比对全基因组序列并构建核心基因组进化树[9],使用hierBAPS软件进行进化树分簇[10],再利用FigTree v1.4.2和iTOL v4软件进行美化注释[11]。
2. 结果与分析
2.1 鸭疫里默氏杆菌分离与鉴定
分离株在TSA平板上长成光滑、湿润、半透明的奶油状菌落,在麦康凯平板上不生长;革兰染色呈阴性的单个或成双排列的短小杆菌;生化试验显示分离株均不发酵蔗糖、乳糖、木糖、葡萄糖、果糖、甘露糖、甘露醇、山梨醇,不产生硫化氢,不利用柠檬酸盐,甲基红试验、靛基质试验、硝酸盐还原试验阴性,氧化酶、过氧化物酶试验阳性;通过特异性PCR扩增,分离株均可扩增到约300 bp的条带,与目的条带大小一致(图1)。
2.2 动物回归试验
所有鸭疫里默氏杆菌分离株对试验鸭均有不同程度的致病力,发病率达100%,致死率介于70%~100%,其中70.24%(118/168)的分离株的毒力较强,在接种后48 h内试验鸭全部死亡,剖检未见典型的鸭疫里默氏杆菌病病理变化,其余分离株接种试验鸭后病程较长,剖检可见典型的鸭疫里默氏杆菌病病理变化。所有试验鸭接种分离株后均表现鸭疫里默氏杆菌病临床症状,主要表现精神沉郁,采食、饮水减少或废绝,排绿色或黄绿色粪便,共济失调,头颈震颤,角弓反张及转圈运动等,严重者导致死亡。从接种鸭疫里默氏杆菌分离株试验鸭的肝脏或心脏中均可分离到接种菌,革兰染色均为阴性的短小杆菌,生化试验结果符合鸭疫里默氏杆菌特性,PCR鉴定结果与分离株初次分离鉴定结果一致。因此,根据细菌分离鉴定结果和动物回归试验结果确定从广东地区的鸭场共分离到168株鸭疫里默氏杆菌菌株。
2.3 血清型鉴定
鸭疫里默氏杆菌分离株血清型鉴定结果见表2,血清1、2、3、5、6、7、8、10型和未定型均有流行,其中高达54.17%(91/168)的分离株为1型,其次为2型,占27.97%(47/168)。因此,广东地区鸭疫里默氏杆菌分离株以1型为优势血清型。
表 2 各地区各血清型鸭疫里默氏杆菌分离株数量Table 2. Isolate number of each serotype for Riemerella anatipestifer isolates from different districts地区
District分离株数
Isolate number血清型 Serotype 1 2 3 4 5 6 7 8 9 10 未定型 Undefined 韶关 Shaoguan 15 7 2 2 0 0 1 0 1 0 0 2 河源 Heyuan 13 7 4 1 0 0 0 0 0 0 1 0 云浮 Yunfu 25 15 8 0 0 1 0 0 0 0 0 1 肇庆 Zhaoqing 12 6 3 1 0 0 0 0 1 0 1 0 清远 Qingyuan 19 10 6 1 0 1 0 0 0 0 0 1 佛山 Foshan 12 7 4 0 0 0 0 1 0 0 0 0 茂名 Maoming 16 8 5 1 0 0 0 0 1 0 1 0 惠州 Huizhou 17 12 3 0 0 0 0 1 0 0 1 0 汕头 Shantou 21 12 7 0 0 0 0 0 0 0 2 0 湛江 Zhanjiang 18 7 5 0 0 1 1 1 2 0 0 1 总计 Total 168 91 47 6 0 3 2 3 5 0 6 5 2.4 药物敏感性试验
药物对鸭疫里默氏杆菌代表性菌株的MIC测定结果及敏感性统计结果见表3。根据MIC分析各药物抑制50%和90%鸭疫里默氏杆菌菌株生长的MIC,即MIC50和MIC90,MIC50介于0.25~>256 mg/L,其中,头孢噻肟最低,仅0.25 mg/L,阿莫西林为1 mg/L,氨苄西林、土霉素、盐酸四环素、盐酸金霉素、氧氟沙星均为8 mg/L,盐酸环丙沙星为16 mg/L,诺氟沙星、大观霉素、庆大霉素分别为32、64、128 mg/L,磺胺嘧啶为256 mg/L,卡那霉素、磺胺二甲嘧啶、磺胺对甲氧嘧啶均为>256 mg/L;MIC90值介于8~>256 mg/L,其中,头孢噻肟最低,仅8 mg/L;土霉素和盐酸金霉素为16 mg/L;盐酸四环素、氧氟沙星、盐酸环丙沙星均为32 mg/L;诺氟沙星为64 mg/L;阿莫西林、氨苄西林、大观霉素均为128 mg/L;卡那霉素、庆大霉素、磺胺嘧啶、磺胺二甲嘧啶、磺胺对甲氧嘧啶较高,均为>256 mg/L。
表 3 48株鸭疫里默氏杆菌代表性分离株最低抑菌浓度(MIC)测定结果1)Table 3. The minimum inhibitory concentration (MIC) of 48 representative isolates of Riemerella anatipestifer药物类型
Drug type药物1)
DrugMIC/
(mg·L−1)MIC50/
(mg·L−1)MIC90/
(mg·L−1)占比/% Proportion 敏感
Sensitive中介
Intermediate耐药
Resistantβ−内酰胺类 AMX <0.125~256 1 128 75.00(36/48) 6.25(3/48) 18.75(9/48) β-lactams AMP <0.125~256 8 128 64.58(31/48) — 35.42(17/48) CTX <0.125~256 0.25 8 91.67(44/48) 4.17(2/48) 4.17(2/48) 四环素类 OXY <0.125~128 8 16 20.83(10/48) 14.58(7/48) 64.58(31/48) Tetracyclines TCY <0.125~128 8 32 18.75(9/48) 10.42(5/48) 70.83(34/48) CTE <0.125~32 8 16 18.75(9/48) 20.83(10/48) 60.42(29/48) 氨基糖苷类 GEN 0.25~>256 128 >256 8.33(4/48) — 91.67(44/48) Aminoglycosides KAN 2~>256 >256 >256 8.33(4/48) 2.08(1/48) 89.58(43/48) STP 16~256 64 128 45.83(22/48) 25.00(12/48) 29.17(14/48) 喹诺酮类 OFX 0.5~64 8 32 20.83(10/48) 6.25(3/48) 72.92(35/48) Quinolones NOR 0.25~128 32 64 14.58(7/48) 16.67(8/48) 68.75(33/48) CIP 0.5~64 16 32 14.58(7/48) 4.17(2/48) 81.25(39/48) 磺胺类 SDI 64~>256 256 >256 52.08(25/48) — 47.92(23/48) Sulfonamides SUL 32~>256 >256 >256 39.58(19/48) — 60.42(29/48) SMD 128~>256 >256 >256 33.33(16/48) — 66.67(32/48) 1)AMX:阿莫西林,AMP:氨苄西林,CTX:头孢噻肟,OXY:土霉素,TCY:盐酸四环素,CTE:盐酸金霉素,GEN:庆大霉素,KAN:卡那霉素,STP:大观霉素,OFX:氧氟沙星,NOR:诺氟沙星,CIP:盐酸环丙沙星,SDI:磺胺嘧啶,SUL:磺胺二甲嘧啶,SMD:磺胺对甲氧嘧啶;MIC50和MIC90为能抑制50%和90%细菌生长所需的MIC;“—”表示未检测出菌株
1) AMX: Amoxicillin, AMP: Ampicillin, CTX: Cefotaxime, OXY: Oxytetracycline, TCY: Tetracycline hydrochloride, CTE: Chlortetracycline hydrochloride, GEN: Gentamicin, KAN: Kanamycin, STP: Spectinomycin, OFX: Ofloxacin, NOR: Norfloxacin, CIP: Ciprofloxacin hydrochloride, SDI: Sulfadiazine, SUL: Sulfadimidine, SMD: Sulfametoxydiazine; MIC50 and MIC90 are MIC values that can inhibit 50% and 90% bacteria growth; “—” indicates no detectable isolate分析鸭疫里默氏杆菌代表性菌株对受试药物的敏感性,对庆大霉素的耐药率高达91.67%(44/48);对卡那霉素和盐酸环丙沙星的耐药率分别为89.58%(43/48)和81.25%(39/48);对土霉素、盐酸四环素、盐酸金霉素、氧氟沙星、诺氟沙星、磺胺二甲嘧啶、磺胺对甲氧嘧啶的耐药率介于60%~80%;对磺胺嘧啶和氨苄西林的耐药率介于30%~60%;对阿莫西林、头孢噻肟和大观霉素的耐药水平较低(30%以下)。
根据药敏试验结果,分析鸭疫里默氏杆菌代表性菌株的多重耐药性,结果如图2所示。48株鸭疫里默氏杆菌对5~12种药物耐药,其中9耐和10耐的菌株总数最多,占54.17%(26/48),6耐和11耐、7耐与8耐的菌株数相同,分别为4株和5株,而5耐和12耐菌株数最少,各有2株。
统计并分析鸭疫里默氏杆菌分离株的耐药谱,48株鸭疫里默氏杆菌具有44种耐药谱型,其中40株为单一谱型,构成比为2.08%(1/48),其余4种耐药谱型分别为2株所共有,构成比为4.16%(2/48) (表4)。
表 4 48株鸭疫里默氏杆菌代表性分离株耐药谱统计结果Table 4. Drug resistance spectrum of 48 representative isolates of Riemerella anatipestifer药物数量
Drug number耐药谱1)
Resistant spectrum菌株数
Isolate number占比/%
Proportion5 OFX-NOR-OXY-GEN-KAN
OFX-CTE-GEN-CIP-KAN1
12.08
2.086 OFX-NOR-TCY-GEN-CIP-KAN
OFX-NOR-GEN-CIP-KAN-SMD
NOR-GEN-CIP-KAN-SUL-SMD
CIP-KAN-STP-SUL-SMD-SDI1
1
1
12.08
2.08
2.08
2.087 OXY-TCY-CTE-GEN-KAN-SUL-NOR
OXY-GEN-KAN-SDI-SUL-SMD-CIP
OXY-TCY-CTE-GEN-KAN-OFX-CIP
OXY-TCY-CTE-GEN-KAN-NOR-CIP1
1
1
22.08
2.08
2.08
4.168 OFX-NOR-TCY-CTE-GEN-CIP-SUL-SMD
NOR-TCY-CTE-GEN-CIP-KAN-SDI-SMD
CIP-GEN-SDI-SUL-SMD-NOR-TCY-AMP
AMX-AMP-OXY-TCY-CTE-GEN-KAN-OFX
AMP-STP-SDI-SUL-SMD-GEN-KAN-OXY1
1
1
1
12.08
2.08
2.08
2.08
2.089 OFX-NOR-TCY-OXY-CTE-GEN-CIP-KAN-SUL
OFX-NOR-TCY-CIP-KAN-SDI-SUL-SMD-GEN
OFX-NOR-AMX-CTE-GEN-CIP-KAN-SUL-SMD
OXY-TCY-GEN-KAN-OFX-NOR-CIP-SDI-SUL
TCY-GEN-CIP-KAN-SDI-SMD-CTE-OFX-SUL
OXY-AMP-GEN-KAN-STP-SDI-SUL-SMD-NOR
OFX-NOR-OXY-GEN-CIP-KAN-SUL-SMD-SMD
OFX-TCY-OXY-GEN-KAN-STP-SDI-SUL-SMD
AMP-CTX-SDI-GEN-SMD-OFX-STP-KAN-CIP
AMX-AMP-OXY-TCY-STP-KAN-OFX-SDI-GEN
SMD-ERY-OFX-SDI-CIP-AMX-AMP-CTE-TCY
NOR-TCY-OXY-CTE-GEN-CIP-KAN-SUL-AMP2
1
1
2
1
1
1
1
1
1
1
14.16
2.08
2.08
4.16
2.08
2.08
2.08
2.08
2.08
2.08
2.08
2.0810 NOR-TCY-OXY-CTE-GEN-CIP-KAN-STP -SMD-SDI
AMP-OXY-TCY-CTE-GEN-KAN-OFX-NOR-CIP-SMD
OFX-NOR-TCY-CTE-GEN-CIP-KAN-SDI-SMD-SUL
OFX-NOR-TCY-OXY-CTE-GEN-CIP-KAN-SMD-SDI
OFX-NOR-AMX-AMP-GEN-CIP-KAN-SUL-SMD-CTE
OFX-NOR-TCY-AMX-OXY-CTE-GEN-CIP-KAN-SDI
OFX-NOR-TCY-OXY-CTE-GEN-CIP-KAN-SUL-SMD
TCY-AMP-GEN-CIP-KAN-STP-SDI-SUL-SMD-KAN
AMX-AMP-OXY-TCY-CTE-GEN-KAN-OFX-SDI-SUL
OFX-NOR-OXY-CTE-AMP-GEN-CIP-KAN-SUL-SMD
OFX-NOR-AMX-AMP-GEN-CIP-KAN-SDI-SMD-STP
TCY-OXY-GEN-KAN-STP-SDI-SUL-SMD-CTX-AMP1
1
1
1
1
1
1
1
1
1
1
12.08
2.08
2.08
2.08
2.08
2.08
2.08
2.08
2.08
2.08
2.08
2.0811 OFX-NOR-TCY-CTE-OXY-GEN-CIP-KAN-STP-SDI-SMD
OFX-NOR-TCY-OXY-CTE-AMP-GEN-CIP-KAN-STP-SUL
OFX-NOR-TCY-OXY-CTE-AMP-GEN-CIP-KAN-STP-SMD2
1
14.16
2.08
2.0812 AMX-OXY-TCY-CTE-STP-KAN-OFX-NOR-SUL-SMD-SMD-CIP
OFX-NOR-TCY-OXY-AMP-GEN-CIP-STP-SUL-SMD-SDI-CTE1
12.08
2.081) AMX:阿莫西林,AMP:氨苄西林,CTX:头孢噻肟,OXY:土霉素,TCY:盐酸四环素,CTE:盐酸金霉素,GEN:庆大霉素,KAN:卡那霉素,STP:大观霉素,OFX:氧氟沙星,NOR:诺氟沙星,CIP:盐酸环丙沙星,SDI:磺胺嘧啶,SUL:磺胺二甲嘧啶,SMD:磺胺对甲氧嘧啶
1) AMX: Amoxicillin, AMP: Ampicillin, CTX: Cefotaxime, OXY: Oxytetracycline, TCY: Tetracycline hydrochloride, CTE: Chlortetracycline hydrochloride, GEN: Gentamicin, KAN: Kanamycin, STP: Spectinomycin, OFX: Ofloxacin, NOR: Norfloxacin, CIP: Ciprofloxacin hydrochloride, SDI: Sulfadiazine, SUL: Sulfadimidine, SMD: Sulfametoxydiazine2.5 全基因组测序分析
由北京诺禾致源科技股份有限公司对48株鸭疫里默氏杆菌代表性菌株进行全基因组测序,经过Quast软件质检后,其中2株拼接质量不高,故仅有46株进行后续分析。共检出6种耐药基因,其中携带四环素类耐药基因tet(X)的菌株最多,阳性率高达82.60%(38/46);大环内酯类耐药基因erm(F)阳性率为73.91%(34/46),而大环内酯类另一耐药基因ere(D)的阳性率仅有19.57%(9/46);β−内酰胺类耐药基因bla OXA-209的阳性率为54.35%(25/46);氨基糖苷类耐药基因aadS和氟苯尼考耐药基因floR的阳性率相对较低,分别为34.78%(16/46)和30.43%(14/46)。耐药基因结果见表5。
表 5 46株鸭疫里默氏杆菌代表性分离株耐药基因携带情况Table 5. The resistance genes carried by 46 Riemerella anatipestifer representative isolates药物
Drug耐药基因
Resistant gene阳性率/%
Positive rate大环内酯类 erm(F) 73.91(34/46) Macrolides ere(D) 19.57(9/46) 四环素类
Tetracyclinestet(X) 82.60(38/46) 氟苯尼考
FlorfenicolfloR 30.43(14/46) 氨基糖苷类
AminoglycosidesaadS 34.78(16/46) β−内酰胺类 β-lactams bla OXA-209 54.35(25/46) 基于获得的46株鸭疫里默氏杆菌全基因组序列,进一步分析其MLST,其中18株ST分型成功,分别为ST38(4株)、ST13(2株)、ST24(2株)、ST35(2株)、ST44(2株),其他ST型分别为ST2、ST16、ST21、ST34、ST42和ST43,均只有1株,其余28株为未知ST型;说明本研究测序菌株的ST型呈多样性,未出现优势ST型。
将本研究46株鸭疫里默氏杆菌菌株的全基因组测序结果与数据库中59株鸭疫里默氏杆菌菌株的全基因组数据进行比对,构建核心基因组进化树(图3),数据库59株鸭疫里默氏杆菌菌株中,39株来源于中国,9株来源于英国,2株来源于印度,德国、俄罗斯和美国各有1株,另有6株未标注来源。总计105株鸭疫里默氏杆菌菌株分布在6个分簇群系中,本研究所有测序菌株与数据库中来自中国的菌株相似度较高,且集中分布在3个簇群中,其中Clade 1群系最大,包含67株,我国菌株占50.75%(34/67),其次为Clade 3群系,包含17株,我国菌株占47.06%(8/17),Clade 2 群系包含5株鸭疫里默氏杆菌,我国菌株数占60.00%(3/5)。数据库中大部分鸭疫里默氏杆菌菌株来自于中国,而欧洲来源的菌株占比较低,并且观察到来自世界各地的鸭疫里默氏杆菌菌株间存在地理分布差异。另外,数据库中我国菌株从1990年到2017年间均有收集,持续时间接近30年,时间跨度较大,但仍能与本研究测序菌株在进化树中聚集在一起,说明在我国鸭疫里默氏杆菌存在区域内长时间持续传播的特点。
3. 讨论与结论
3.1 讨论
鸭疫里默氏杆菌病血清型复杂,在世界范围内流行,目前在国内多个地区均有鸭疫里默氏杆菌血清型流行情况的报道,广西百色分离株血清型比较单一,全部为1型[12];山东分离株至少存在1、2、6、10和11型5种血清型,其中以1型和2型为优势血清型[13-14];超过半数的江苏分离株为1型[15];安徽分离株则多达7种血清型,但以1型和2型发生最广泛[16];河南分离株以1型和2型多发,此外还流行10型和未定型[17];血清1、2、3、4、8、10、15型在广东地区均有流行,以1型最多发[18-20]。与国内情况类似,国外也流行多种血清型,美国以1型为主,此外还流行1、2、5、11、13、15、19、21型[21];1型和2型为英国多发血清型,同时5、9、13和15型也有流行[22];泰国主要流行1、5、6、7、10和21型[23];新加坡以1、5和10型这3种血清型为主[24];1型和3型为丹麦的优势血清型[25];韩国只有1、4和7型这3种血清型[26];澳大利亚则流行1、6、8、9、13和14型[27]。本研究高达54.17%的分离株为血清1型,也是优势血清型。分析国内外鸭疫里默氏杆菌血清型流行情况发现多血清型流行已呈基本态势,其中1型为最普遍发生的血清型,也是重点防控的血清型。
在养殖过程中,由于长期应用抗菌药物治疗鸭疫里默氏杆菌病,导致广泛而严重的耐药性。调查显示山东分离株对氨基糖苷类药物高度耐药,并且具有多重耐药性[28];安徽分离株对恩诺沙星、新霉素、安普霉素表现不同程度的耐药性[29];贵州分离株则对氨基糖苷类和大环内酯类等药物表现高度耐药,多重耐药高达17耐[30];同样,广东地区分离株耐药状况也比较严峻,朱元军等[31]报道分离株对丁胺卡那、卡那霉素、庆大霉素和链霉素高度耐药,多数分离株表现七重以上耐药。另外,耐药性还具有随药物使用时间延长进一步加剧的现象,从同一地区采集的分离株对红霉素和多黏菌素B的耐药率呈逐年升高的趋势[32-33]。本研究采样养殖场经常采用庆大霉素、卡那霉素、磺胺嘧啶、头孢类药物、喹诺酮类药物、环丙沙星、恩诺沙星、四环素、土霉素、多黏菌素B、林可霉素等药物进行治疗,从养殖场样本中分离的鸭疫里默氏杆菌对头孢噻肟、阿莫西林、大观霉素的耐药率低于30%,对土霉素、盐酸四环素、盐酸金霉素、庆大霉素、卡那霉素等药物均表现高度耐药。因此,总体上养殖场用药与耐药表型具有一定的对应性,在临床选择药物时,最好先进行药敏试验,选用抗菌效果较好的药物,同时也要结合本养殖场的用药史合理用药。
通过分析本研究测序菌株耐药表型与耐药基因的相关性,发现携带tet(X)基因的菌株对四环素类药物全部表现耐药,因此,tet(X)基因是介导四环素耐药的最重要基因[34];氨基糖苷类耐药率高于耐药基因aadS的携带率,说明除耐药基因外还存在其他因素导致氨基糖苷类耐药,这一结果与蔡秀磊[35]研究结论一致,即氨基糖苷类耐药还与基因盒−整合子系统有关;bla OXA-209的阳性率与耐药率基本一致。由于本研究未对大环内酯类和氟苯尼考进行药物敏感性测试,因此,尚不清楚这2类药物耐药基因携带率与耐药表型的相关性。总体上,耐药表型与耐药基因具有一定的相关性,但是也要明确鸭疫里默氏杆菌分离株产生耐药性的原因比较复杂,除与耐药基因有关外,还与环境、药物等诸多因素有关。
通过系统进化树发现,来自世界各地的鸭疫里默氏杆菌菌株间存在地理分布差异,本研究的测序菌株主要分布在Clade 1簇群,且血清型全部为1型,由于数据库中其他菌株没有相关血清型信息,因此,具体血清型不明确,但可以推测,该簇群的分离株与血清1型密切相关。
鉴于本研究鸭疫里默氏杆菌血清型复杂及耐药性严重的现状,应首先针对当地或本养殖场主要流行的血清型选取相应的灭活疫苗进行免疫,当出现疫苗株以外的血清型感染时,则以当地或本养殖场的分离株制备灭活疫苗,同时选择敏感药物并合理用药辅助治疗,可以达到更有效的防治效果。
3.2 结论
本研究在对广东地区鸭疫里默氏杆菌分离株的血清型和耐药性初步了解的基础上,又结合全基因组测序数据对耐药基因、ST分型、遗传进化树做进一步分析,发现分离株的优势血清型为1型,耐药性严重,所携带的耐药基因与耐药表型具有一定的相关性,ST型呈多样性,与MLST 数据库中来自我国的菌株遗传背景相近,研究结果为鸭疫里默氏杆菌病疫苗免疫预防与药物治疗及掌握鸭疫里默氏杆菌遗传进化特征提供了依据。
-
图 1 黄牛木种群扩散分布情况
图中每一景观栅格为10 m×10 m,着色区域代表黄牛木个体的空间分布情况,红色区域为其种群斑块内的胸径最大个体,即种群母树
Figure 1. Diffusion and distribution of Cratoxylum cochinchinense population
Each lattice is 10 m × 10 m in the graph,the coloring part indicates spatial distribution of Cratoxylum cochinchinense, and the red part indicates the parent tree with the largest DBH in population
表 1 黄牛木种群生长因子统计与扩散速率测定结果
Table 1 Growth factor statistics and diffusion rate of Cratoxylum cochinchinense population
调查地点
Sample
plot径阶1)
Diameter
class平均胸径/cm
Average
DBH平均冠幅/m
Average crown width投影面积/m2
Canopy projection area累计投影面积/m2
Cumulative projection area投影增长面积/m2
Growth of projected area扩散速率2)/
(m2·cm-1)
Diffusion rate茶山
Chashan1 0.7 0.64 57.970 1 500.986 69.245 54.73 2 2.0 1.54 278.237 1 431.741 16.871 9.24 3 3.8 2.25 452.280 1 414.870 182.252 90.15 4 5.8 3.15 506.477 1 232.618 262.519 132.91 5 7.8 3.54 386.610 970.099 232.929 128.33 6 9.6 4.23 317.200 737.170 258.751 122.28 7 11.8 4.36 161.358 478.419 136.663 82.22 8 13.4 5.99 146.789 341.756 102.866 42.27 9 15.9 6.38 64.192 238.890 64.192 35.66 10 17.7 6.58 125.410 174.698 125.410 67.79 11 19.5 7.90 49.288 49.288 49.288 − 白云山
Baiyun mountain1 0.8 0.79 74.644 1 374.181 17.406 15.27 2 1.9 1.24 301.900 1 356.775 102.391 54.52 3 3.8 1.94 458.132 1 254.384 232.904 112.39 4 5.9 2.61 517.476 1 021.480 366.714 189.88 5 7.8 3.28 340.751 654.766 262.731 137.16 6 9.7 3.84 189.505 392.035 170.537 98.44 7 11.5 3.99 148.960 221.498 136.265 49.55 8 14.2 4.55 16.249 85.233 16.249 8.78 9 16.1 4.69 68.984 68.984 68.984 − 石花山
Shihua mountain1 0.8 0.38 0.775 709.426 0.115 0.09 2 2.1 1.11 16.533 709.311 6.207 3.14 3 4.1 2.10 91.076 703.104 42.808 24.96 4 5.8 2.66 177.765 660.296 100.895 45.04 5 8.0 3.49 244.906 559.401 152.533 91.28 6 9.7 4.23 220.326 406.868 186.753 79.85 7 12.1 5.25 194.700 220.115 194.700 76.35 8 14.6 1.45 1.673 25.415 1.672 1.11 9 16.1 5.50 23.743 23.743 23.743 − 1)第1径阶为树高 <1.3 m 和胸径 <1 cm 的黄牛木个体,其余径阶为树高 ≥1.3 m 且胸径≥1 cm 的黄牛木个体,胸径每隔 2 cm 增加一个径阶;2) “−” 代表需测得下一径阶数据方可进行计算
1) The first diameter class includes Cratoxylum cochinchinense trees with height <1.3 m and DBH <1 cm, the other diameter classes include trees with height≥1.3 m and DBH≥1 cm, and the diameter class increases one class with every 2 cm increase in DBH; 2) “−” indicates the value can not be calculated without data of the next diameter class表 2 茶山样地黄牛木种群扩散速率与平均胸径的函数模型方程及参数估计
Table 2 Function model and parameter estimation of diffusion rate - average DBH for Cratoxylum cochinchinense population in Chashan sample plot
方程
Equation参数估计值 Estimated parameter R2 F ν1 ν2 P a b1 b2 线性 Linear 0.003 0.023 1 8 0.882 80.041 −0.393 对数 Logarithm 0.037 0.310 1 8 0.593 61.672 8.042 倒数 Reciprocal 0.082 0.717 1 8 0.422 85.001 −30.106 二次 Quadratic 0.443 2.786 2 7 0.129 27.365 18.071 −1.018 复合 Composite 0.018 0.145 1 8 0.713 52.329 1.019 幂 Power 0.082 0.719 1 8 0.421 40.396 0.229 S 0.065 0.560 1 8 0.476 4.266 −0.514 增长 Growth 0.018 0.145 1 8 0.713 3.958 0.019 指数 Index 0.018 0.145 1 8 0.713 52.329 0.019 Logistic 0.018 0.145 1 8 0.713 0.019 0.982 表 3 黄牛木单株生长因子调查与模拟结果
Table 3 Survey and simulation results of growth factors of individual Cratoxylum cochinchinense tree
径阶1)
Diameter
class数量/株
Number胸径/cm
DBH实际调查结果 Survey result 模拟分析结果 Simulation analysis result 冠幅/m
crown width冠幅面积/m2
crown area增长面积/m2
growth area冠幅/m
crown width冠幅面积/m2
crown area增长面积/m2
growth area扩散速率/
(m2·cm−1) Diffusion rate1 422 0.8 0.60 0.286 0.286 0.68 0.366 0.366 0.4 2 607 2.0 1.29 1.316 1.030 1.24 1.209 0.843 0.7 3 389 3.9 2.10 3.451 2.135 2.02 3.209 2.000 1.1 4 250 5.8 2.81 6.189 2.738 2.79 6.114 2.905 1.5 5 123 7.9 3.43 9.259 3.070 3.51 9.681 3.567 1.7 6 59 9.7 4.10 13.190 3.930 4.08 13.060 3.379 1.9 7 34 11.7 4.53 15.658 2.468 4.63 16.828 3.769 1.9 8 8 14.1 5.27 21.809 6.151 5.19 21.126 4.298 1.8 9 7 16.0 5.52 23.926 2.118 5.56 24.238 3.112 1.6 1) 第 1 径阶为树高 <1.3 m 和胸径 <1 cm 的黄牛木个体,树高≥1.3 m 且胸径≥1 cm 的黄牛木个体,其胸径每隔 2 cm 增加一个径阶
1) The first diameter class includes Cratoxylum cochinchinense trees with height <1.3 m and DBH <1 cm, the other diameter classes include trees with height≥1.3 m and DBH≥1 cm, and the diameter class increases one class with every 2 cm increase in DBH -
[1] 蔡小英. 武夷山黄山松种群结构与动态研究[D]. 福州: 福建农林大学, 2008. [2] DIECKMANN U, O'HARA B, WEISSER W. The evolutionary ecology of dispersal[J]. Trends Ecol Evol, 1999, 14(3): 88-90. doi: 10.1016/S0169-5347(98)01571-7
[3] 肖治术, 张知彬. 扩散生态学及其意义[J]. 生态学杂志, 2004, 23(6): 107-110. doi: 10.3321/j.issn:1000-4890.2004.06.023 [4] 赵秋玲, 杜坤, 裴会明, 等. 小陇山林区庙台槭种子扩散格局及天然更新研究[J]. 林业科技通讯, 2018(8): 3-6. [5] 全威, 王明, 桑卫国. 外来入侵植物风传扩散过程模拟模型选择[J]. 生态学杂志, 2018, 37(9): 2840-2848. [6] 刘明宇, 唐毅. 风力驱动的榆树疏林种子扩散模拟[J]. 生态学杂志, 2018, 37(8): 2524-2531. [7] 陈文文. 水杉(Metasequoia glyptostroboides)自然种群交配系统和扩散格局研究[D]. 上海: 华东师范大学, 2016. [8] 曾心美, 童芬, 刘艳梅, 等. 丫蕊花属植物花粉和种子微形态特征比较及其分类学意义[J]. 西北植物学报, 2017, 37(4): 695-704. [9] 郭志文, 郑景明. 用植物生活史性状预测种子扩散方式[J]. 生物多样性, 2017, 25(9): 966-971. [10] 周禧琳, 吕瑞恒, 韩路, 等. 和田河不同生境灰胡杨种群结构特征及竞争关系分析[J]. 西北林学院学报, 2018, 33(1): 43-48. [11] REY P J, ALCANTARA J M. Recruitment dynamic of a fleshy-fruited plant (Olea europaea): Connecting patterns of seed dispersal to seedling establishment[J]. J Ecol, 2000, 88(4): 622-633. doi: 10.1046/j.1365-2745.2000.00472.x
[12] 邢福武, 余明思. 深圳野生植物[M]. 北京: 中国林业出版社, 2000. [13] 陈勇, 廖绍波, 李伟东, 等. 番禺区主要植被类型及其改造途径[J]. 中国农学通报, 2006, 22(6): 137-140. doi: 10.3969/j.issn.1000-6850.2006.06.032 [14] 李果惠, 张尚坤, 叶耀雄, 等. 东莞银瓶山森林公园鹅掌柴群落物种多样性和优势种种群动态[J]. 林业与环境科学, 2018, 34(3): 65-72. doi: 10.3969/j.issn.1006-4427.2018.03.011 [15] 刘东蔚, 王海军, 陈勇, 等. 深圳羊台山黄牛木群落学特征研究[J]. 生态科学, 2014, 33(2): 379-385. [16] MAISUTHISAKUL P, PONGSAWATMANIT R, GORDON M H. Characterization of the phytochemicals and antioxidant properties of extracts from Teaw (Cratoxylum formosum)[J]. Food Chem, 2007, 100(4): 1620-1629. doi: 10.1016/j.foodchem.2005.12.044
[17] 王祝年, 李晓霞, 王建荣, 等. 黄牛木果实挥发油的化学成分研究[J]. 热带作物学报, 2010, 31(6): 1047-1049. doi: 10.3969/j.issn.1000-2561.2010.06.032 [18] 古炎坤. 生态资源可持续发展理论与实践: 广州市白云山国家重点风景名胜区[M]. 北京: 中国林业出版社, 2005: 3-12. [19] 戴其生, 张梅林, 徐玉伟, 等. 红楝子人工造林试验初报[J]. 安徽林业科技, 1997, 4(1): 33-34. [20] 胡梦宇. 藜蒴景观林的物种流研究[D]. 广州: 华南农业大学, 2016. [21] 彭晓昶, 潘燕, 朱晓媛, 等. 云南7种常见菊科杂草植物具冠毛种子形态与风传播特征[J]. 云南大学学报(自然科学版), 2018, 40(5): 202-211. [22] 中国科学院中国植物志编辑委员会. 中国植物志:第50卷:第2分册[M]. 北京: 科学出版社, 1999. [23] 冯娴慧, 魏清泉. 广州城市近地风场特征研究[J]. 生态环境学报, 2011, 20(10): 1558-1561. doi: 10.3969/j.issn.1674-5906.2011.10.029 [24] 甘晓英, 杨万基, 甘晓星, 等. 台山市风场特征与工业布局合理性浅析[J]. 广东气象, 2013, 35(1): 54-58. doi: 10.3969/j.issn.1007-6190.2013.01.012 [25] 焦毅. 种子传播的花式招数[J]. 军事文摘, 2018(6): 38-41. [26] 迪利夏提·哈斯木, 阿马努拉·依明尼亚孜, 依明·艾力, 等. 准噶尔荒漠两种猪毛菜果实扩散特性研究[J]. 干旱区资源与环境, 2017, 31(7): 151-155. [27] 王艳莉, 齐欣宇, 杨昊天, 等. 不同生境下砂蓝刺头(Echinops gmelini)形态结构及生物量分配特征[J]. 中国沙漠, 2018, 38(4): 756-764. [28] 赵强民. 广州白云山木荷种群的空间分布格局研究[D]. 广州: 华南农业大学, 2008. -
期刊类型引用(4)
1. 郭毫单,吴影,韦玉琼,曹力,白周亚,樊秋霞,彭楠,古绍彬. 凝结魏茨曼氏菌BC99应急能量棒研制及抗疲劳效应研究. 食品工业科技. 2025(01): 218-230 . 百度学术
2. 陈倩玲,沙玉柱,刘秀,邵鹏阳,王翻兄,陈小伟,杨文鑫,谢转回,高敏,黄薇. 肠道微生物与线粒体互作调控动物脂肪沉积的研究进展. 畜牧兽医学报. 2024(06): 2293-2303 . 百度学术
3. 陶舒悦,梁万徽,汪杰,张云静,方玲,彭灿. 心通口服液治疗急性心肌梗死的代谢组学研究. 安徽中医药大学学报. 2023(06): 73-79 . 百度学术
4. 孟科,赵薇,郭晨浩,聂伟,陶毛孩,袁晓春,孙昊然,冯登侦. 不同品种绵羊肌内脂肪沉积相关miRNA的筛选与功能预测. 江苏农业学报. 2023(07): 1554-1566 . 百度学术
其他类型引用(4)