Astaxanthin alleviates lipopolysaccharide-induced acute liver injury of mice
-
摘要:目的
研究虾青素(AST)对脂多糖(LPS)诱导的小鼠急性肝损伤的影响。
方法健康雄性ICR小鼠40只随机分为4组, 包括对照组、AST组、LPS组和虾青素预保护组(AST+LPS组)。记录小鼠体质量并计算肝脏系数;通过ELISA法检测血清中髓过氧化物酶(MPO)含量;生物化学法测定肝组织中丙二醛(MDA)的含量及超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)和过氧化氢酶(CAT)的活性;荧光定量PCR法检测抗氧化酶SOD、GSH-Px、CAT、谷氨酸半胱氨酸连接酶催化亚基(GCLC)的mRNA相对表达量;通过HE染色观察各组肝脏细胞形态和肝损伤程度。
结果各组小鼠初始体质量均为18 g,末次称量与初始体质量相比增加9~11 g,但各组间体质量增加无显著性差异(P>0.05)。与LPS组相比,AST+LPS组小鼠肝脏系数(0.054)、血清MPO质量浓度(10.20 ng·mL–1)和肝组织中MDA质量摩尔浓度(2.83 μmol·g–1)显著降低(P<0.05),抗氧化酶SOD(512.14 U·mg–1)、GSH-Px(848.91 U·mg–1)和CAT(61.53 U·mg–1)活性显著提高(P<0.05),抗氧化酶mRNA的相对表达量均显著升高(P<0.05),同时肝脏损伤程度低,肝细胞形态完整,排列均匀。
结论虾青素可保护小鼠肝细胞形态,提高肝脏抗氧化水平,调节肝组织中抗氧化酶mRNA的表达,从而缓解LPS引起的肝脏氧化应激,减轻急性肝损伤。
Abstract:ObjectiveTo investigate the effect of astaxanthin (AST) treatment on acute liver injury induced by lipopolysaccharide (LPS) in mouse.
MethodForty healthy male ICR mice were randomly allocated into four groups including control group(CK), AST group, LPS group and AST preprotection group (AST+LPS group). Body weight and liver index of mice were recorded. Myeloperoxidase (MPO) level in serum was measured by ELISA. Malondialdehyde (MDA) content and the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-px) and catalase(CAT) were measured by biochemical methods. The relative mRNA expression levels of antioxidant enzymes including SOD, GSH-Px, CAT and glutamate cysteine ligase catalytic subunit (GCLC) were measured by fluorescence quantitative PCR. HE staining was used to observe the histopathological changes.
ResultThe initial weight of mice in each group was 18 g. The final weight was 9−11 g higher than the initial weight, and there was no significant difference among groups(P>0.05). Compared with LPS group, the liver index (0.054), serum MPO level (10.20 ng·mL–1), and MDA content (2.83 μmol·g–1) in liver tissue were significantly reduced in AST+LPS group (P<0.05). Astaxanthin increased the activities of SOD(512.14 U·mg–1), GSH-Px(848.91 U·mg–1) and CAT (61.53 U·mg–1) as well as the relative mRNA expression levels of tested antioxidases. In addition, the damage degree of liver in AST+LPS group was low, and hepatocyte structure was perfectly aligned.
ConclusionAstaxanthin treatment can protect the morphology of hepatocyte, increase antioxidant level and the mRNA expression of antioxidase in liver, and thereby relive liver oxidative stress and alleviate LPS-induced acute liver injury in mice.
-
Keywords:
- mouse /
- astaxanthin /
- lipopolysaccharide /
- antioxidase /
- liver injury
-
-
表 1 荧光定量PCR引物序列
Table 1 Fluorescence quantitative PCR primer sequence
基因名称
Gene name正向序列(5'→3')
Forward sequence反向序列(5'→3')
Reverse sequence18S RNA CTCAACACGGGAAACCTCAC CGCTCCACCAACTAAGAACG SOD CCACTGCAGGACCTCATTTT CACCTTTGCCCAAGTCATCT GSH-px GGTTCGAGCCCAATTTTACA GGTTCGAGCCCAATTTTACA CAT ATGGTCACCGGCACATGAATGG GATCTTCCTGAGCAAGCCTTCCTG GCLC GGGGTGACGAGGTGGAGTA GTTGGGGTTTGTCCTCTCCC 表 2 不同处理下的小鼠肝脏系数与体质量1)
Table 2 The liver index and body weight of mouse under different treatment
处理
Treatment肝脏系数/%
Liver index初始体质量/g
Initial weight末次体质量/g
Final weight体质量增加/g
Weight increaseCK 0.052±0.002b 18.22±2.34a 27.31±1.24a 9.09±1.37a AST 0.054±0.005b 18.54±1.76a 29.52±1.69a 10.98±1.27a LPS 0.061±0.003a 18.31±2.59a 28.87±2.61a 10.56±2.02a AST+LPS 0.054±0.002b 18.95±3.26a 30.73±3.43a 11.78±1.13a 1) 同列数据后的不同小写字母表示差异显著 (P<0.05,Duncan’s 法,n=10)
1) Different lowercase letters in the same column indicated significant difference (P<0.05,Duncan’s test,n=10)表 3 虾青素对小鼠肝组织氧化水平的影响1)
Table 3 Effect of astaxanthin on oxidation level in mouse liver
处理
Treatment酶活性 /(U·mg–1)
Enzyme activityb(MDA)/(μmol·g–1) SOD CAT GSH-Px CK 546.73±57.51a 71.19±11.66a 938.50±77.39a 2.29±1.03b AST 520.16±31.74a 66.28±6.74a 825.62±84.81a 2.41±0.27b LPS 449.19±33.84b 47.39±7.08b 679.66±102.41b 3.76±0.49a AST+LPS 512.14±52.40a 61.53±8.64a 848.91±121.42a 2.83±0.81b 1) 同列数据后的不同小写字母表示差异显著 (P<0.05,Duncan’s 法,n=10)
1) Different lowercase letters in the same column indicated significant difference (P<0.05,Duncan’s test,n=10) -
[1] LI S, TAN H Y, WANG N, et al. The role of oxidative stress and antioxidants in liver diseases[J]. Int J Mol Sci, 2015, 16(11): 26087-26124.
[2] 冉茂良, 高环, 尹杰. 氧化应激与DNA损伤[J]. 动物营养学报, 2013, 25(10): 2238-2245. doi: 10.3969/j.issn.1006-267x.2013.10.007 [3] SINGAL A K, JAMPANA S C, WEINMAN S A. Antioxidants as therapeutic agents for liver disease[J]. LiverInt, 2011, 31(10): 1432-1448.
[4] DEY A, LAKSHMANAN J. The role of antioxidants and other agents in alleviating hyperglycemia mediated oxidative stress and injury in liver[J]. Food Funct, 2013, 4(8): 1148-1184.
[5] ESREFOGLU M. Oxidative stress and benefits of antioxidant agents in acute and chronic hepatitis[J]. Hepat Mon, 2012, 12(3): 160-167. doi: 10.5812/hepatmon
[6] FASSETT R G, COOMBES J S. Astaxanthin: A potential therapeutic agent in cardiovascular disease[J]. Mar Drugs, 2011, 9(3): 447-465. doi: 10.3390/md9030447
[7] PARK J S, CHYUN J H, KIM Y K, et al. Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans[J]. Nutr Metab, 2010, 7: 18. doi: 10.1186/1743-7075-7-18.
[8] STEWART J S, LIGNELLÅ, PETTERSSON A, et al. Safety assessment of astaxanthin-rich microalgae biomass: Acute and subchronic toxicity studies in rats[J]. Food Chem Toxicol, 2008, 46(9): 3030-3036.
[9] RAO A R, BASKARAN V, SARADA R, et al. In vivo bioavailability and antioxidant activity of carotenoids from microalgal biomass: A repeated dose study[J]. Food Res Int, 2013, 54(1): 711-717. doi: 10.1016/j.foodres.2013.07.067
[10] ADEREM A, ULEVITCH R J. Toll-like receptors in the induction of the innate immune response[J]. Nature, 2000, 406(6797): 782-787. doi: 10.1038/35021228
[11] REUTER S, GUPTA S C, CHATURVEDI M M, et al. Oxidative stress, inflammation, and cancer: How are they linked?[J]. Free Radical Bio Med, 2010, 49(11): 1603-1616. doi: 10.1016/j.freeradbiomed.2010.09.006
[12] KANCZKOWSKI W, CHATZIGEORGIOU A, SAMUS M, et al. Characterization of the LPS-induced inflammation of the adrenal gland in mice[J]. Mol Cell Endocrinol, 2013, 371(1/2): 228-235.
[13] LOVE D, BARRETT T, HAWKINS C. Role of the myeloperoxidase oxidant hypothiocyanous acid (HOSCN) in the adaption of cells to oxidative stress during inflammation[J]. Free Radical Bio Med, 2017, 108: S30. doi: 10.1016/j.freeradbiomed.2017.04.123.
[14] FRIJHOFF J, WINYARD P G, ZARKOVIC N, et al. Clinical relevance of biomarkers of oxidative stress[J]. Antioxid Redox Signal, 2015, 23(14): 1144-1170. doi: 10.1089/ars.2015.6317
[15] MCCORD J M. The evolution of free radicals and oxidative stress[J]. Am J Med, 2000, 108(8): 652-659. doi: 10.1016/S0002-9343(00)00412-5
[16] KLAASSEN C D, REISMAN S A. Nrf2 the rescue: Effects of the antioxidative/electrophilic response on the liver[J]. Toxicol Appl Pharmacol, 2010, 244(1): 57-65.
[17] 高婷, 王子旭, 陈祝茗. ROS介导的氧化应激与自噬[J]. 中国畜牧兽医, 2018, 45(3): 656-662. [18] CICHOŻ-LACH H, MICHALAK A. Oxidative stress as a crucial factor in liver diseases[J]. World J Gastroenterol, 2014, 20(25): 8082-8091. doi: 10.3748/wjg.v20.i25.8082
[19] DALTON T P, DIETER M Z, YANG Y, et al. Knockout of the mouse glutamate cysteine ligase catalytic subunit (Gclc) gene: Embryonic lethal when homozygous, and proposed model for moderate glutathione deficiency when heterozygous[J]. Biochem Biophys Res Commun, 2000, 279(2): 324-329. doi: 10.1006/bbrc.2000.3930
[20] URSO M L, CLARKSON P M. Oxidative stress, exercise, and antioxidant supplementation[J]. Toxicology, 2003, 189(1/2): 41-54.
[21] ZHOU L, GAO M, XIAO Z, et al. Protective effect of astaxanthin against multiple organ injury in a rat model of sepsis[J]. J Surg Res, 2015, 195(2): 559-567. doi: 10.1016/j.jss.2015.02.026