Effects of shading and nitrogen application levels on growth and photosynthesis characteristics of Coffea arabica
-
摘要:目的
探明小粒咖啡Coffea arabica 幼树最佳的光照和施氮耦合模式。
方法试验设置3个遮光水平:不遮光(S0,自然光照)、轻度遮光(S1,65%自然光照)、重度遮光(S2,30%自然光照) , 3个施氮水平:无氮(N0,0 g·kg−1)、中氮(N1,0.20 g·kg−1)、高氮(N2,0.40 g·kg−1),研究不同遮光和施氮水平对小粒咖啡生长、日均光合特性和生物量累积的影响。
结果随遮光度的增加叶绿素总量呈上升趋势。与S0处理相比,S1处理小粒咖啡叶片净光合速率、气孔导度、表观光能利用效率和总生物量分别提高13.54%、18.54%、127.77%和12.41%;S2处理总生物量减少11.55%。与N0处理相比,N1处理叶片净光合速率、气孔导度、表观光能利用效率和总生物量分别增加27.25%、20.77%、10.80%和18.47%,N2处理的上述性状分别增加14.85%、25.99%、41.65%和21.02%。与S0N0相比,随遮光度和施氮量的增加叶片蒸腾速率和表观光能利用效率增大,叶片水分利用效率呈先增后减趋势。
结论小粒咖啡最优的遮光和施氮耦合模式为轻度遮光下高氮组合(S1N2),该组合有利于获得较高的叶片水光利用效率和生物量。
Abstract:ObjectiveTo explore the optimal coupled management mode of light intensity and nitrogen application for Coffea arabica seedlings.
MethodWe set three shading levels: No shade (S0, natural light), light shade (S1, 65% natural light) and severe shade (S2, 30% natural light), and three nitrogen levels: No nitrogen (N0,0 g·kg−1), medium nitrogen (N1, 0.20 g·kg−1), high nitrogen (N2, 0.40 g·kg−1). The effects of shading and nitrogen levels on growth, daily photosynthetic characteristics and biomass accumulation of C. arabica seedlings were studied.
ResultWith the increase of shading degree, the total chlorophyll content increased. Compared with S0 treatment, the net photosynthetic rate, stomatal conductance, light radiation use efficiency and total biomass of C. arabica in S1 treatment increased by 13.54%, 18.54%, 127.77% and 12.41%, respectively. The total biomass decreased by 11.55% in S2 treatment. Compared with N0 treatment, the net photosynthetic rate, stomatal conductance, light radiation use efficiency and total biomass of C. arabica in N1 treatment increased by 27.25%, 20.77%, 10.80% and 18.47%, respectively, and these traits in N2 treatment increased by 14.85%, 25.99%, 41.65% and 21.02%, respectively. Compared with S0N0, with the increases of shading and nitrogen levels, leaf transpiration rate and light radiation use efficiency increased, leaf water use efficiency firstly increased and then decreased.
ConclusionThe optimal mode of light and nitrogen management of C. arabica is the combination of light shade and high nitrogen (S1N2). This mode is suitable for obtaining high leaf water-radiation use efficiency and biomass.
-
Keywords:
- Coffea arabica /
- shading /
- nitrogen /
- photosynthetic characteristic /
- biomass
-
表 1 遮光和施氮处理下小粒咖啡叶绿素含量1)
Table 1 Chlorophyll content of Coffea arabica under different shading and nitrogen levels
遮光水平(S)
Shading level施氮水平(N)
Nitrogen levelw/(mg·g−1) 叶绿素a
Chlorophyll a叶绿素b
Chlorophyll b总叶绿素
Total chlorophyll类胡萝卜素
CarotenoidS0 N0 7.09±0.66f 3.20±0.48e 10.29±1.14g 1.81±0.39cde N1 10.65±1.17e 5.06±0.97d 15.71±2.14f 2.08±0.22cd N2 15.55±0.70d 7.94±1.48bc 23.49±0.78de 3.27±0.53ab $\bar x $ 11.07 5.40 16.50 2.39 S1 N0 15.20±0.44d 6.31±0.54cd 21.51±0.98e 1.37±0.30de N1 17.84±0.95c 7.66±0.82bc 25.50±0.13cd 2.79±0.49abc N2 18.81±0.39bc 8.94±0.36b 27.75±0.75bc 3.73±0.21a $\bar x $ 17.28 7.64 24.92 2.63 S2 N0 18.36±0.70bc 7.80±0.38bc 26.16±1.08c 0.82±0.21e N1 19.91±1.22ab 9.05±0.72b 28.96±0.50b 2.38±0.42bcd N2 21.01±0.85a 11.36±0.81a 32.37±1.66a 3.53±0.91a $\bar x $ 19.76 9.40 29.16 2.24 P S <0.001 <0.001 <0.001 0.378 N <0.001 <0.001 <0.001 <0.001 S×N 0.006 0.463 0.010 0.248 1) 同列数据后不同小写字母表示差异显著 (P<0.05, Duncan’s 法)
1) Different lowercase letters in the same column indicated significant difference (P<0.05, Duncan’s test)表 2 不同遮光和施氮处理下小粒咖啡生长1)
Table 2 Coffea arabica growth under different shading and nitrogen levels
遮光水平(S)
Shading level施氮水平(N)
Nitrogen level株高/cm
Plant height茎粗/mm
Stem diameter冠幅/cm
Crown width叶片数
Leaf number枝条数
Branch number新枝长度/cm
Shoot lengthS0 N0 55.95±1.91f 9.61±1.00de 60.50±3.54cde 301±15.56e 22±2.83a 14.48±0.74c N1 58.05±2.90e 9.29±0.11e 55.50±2.83e 324±5.66de 23±1.41a 17.05±1.34ab N2 62.95±1.48d 10.81±0.58de 62.75±1.06cd 345±16.97bcd 26±4.24a 15.54±0.65abc $\bar x $ 58.98 9.90 59.71 323 24 15.69 S1 N0 66.90±2.69c 12.59±0.71bc 57.00±1.41de 338±14.14cd 25±2.83a 15.85±0.73abc N1 69.65±1.20bc 13.11±0.35ab 64.00±0.71c 358±15.56abc 27±1.41a 18.08±1.17a N2 72.50±3.54b 14.59±0.26a 66.25±3.18bc 376±16.97ab 26±2.83a 17.66±1.83ab $\bar x $ 69.68 13.43 62.33 357 26 17.20 S2 N0 70.90±1.27b 10.97±0.74cde 71.25±6.01b 349±7.07bcd 23±1.41a 15.33±0.94bc N1 72.05±1.34b 11.26±1.28cd 71.50±0.71b 364±8.49abc 24±1.41a 16.48±0.73abc N2 75.35±1.63a 13.05±0.38ab 79.00±2.12a 386±9.90a 27±1.41a 17.10±0.19ab $\bar x $ 72.77 11.76 73.92 366.33 24.67 16.30 P S <0.001 <0.001 <0.001 0.001 0.290 0.086 N <0.001 0.003 <0.001 0.002 0.151 0.020 S×N 0.448 0.864 0.077 0.990 0.737 0.681 1) 同列数据后不同小写字母表示差异显著 (P<0.05, Duncan’s 法)
1) Different lowercase letters in the same column indicated significant difference (P<0.05, Duncan’s test)表 3 不同遮光和施氮水平下小粒咖啡单株生物量累积1)
Table 3 Biomass accumulation of Coffea arabica under different shading and nitrogen levels
遮光水平(S)
Shading level施氮水平(N)
Nitrogen level各器官生物量/g Biomass of organs 总生物量/g
Total biomass根冠比/%
Root/crown ratio根 Root 茎 Stem 叶 Leaf 杆 Rod S0 N0 29.05±1.30g 13.16±0.64cde 61.93±2.64de 28.75±1.73cd 132.89±3.70f 28.04±2.60cd N1 34.46±0.74d 14.09±1.19bcd 75.61±0.91c 33.76±0.96b 157.92±0.40c 27.92±0.85cd N2 39.24±0.64c 16.12±0.91b 87.84±1.85a 30.86±2.85bc 174.05±0.54b 29.10±0.50bcd $\bar x $ 34.25 14.46 75.13 31.12 154.59 28.35 S1 N0 31.95±0.79ef 11.82±2.32de 80.90±1.45b 31.16±1.16bc 155.83±1.82c 25.80±1.18d N1 42.74±0.14b 15.01±0.40bc 81.87±0.64b 42.20±3.87a 181.81±2.97a 30.74±0.52abc N2 45.87±0.11a 20.06±0.85a 84.56±2.64ab 34.44±0.85b 184.93±2.75a 32.99±0.54a $\bar x $ 40.19 15.63 82.44 35.93 174.19 29.84 S2 N0 29.89±1.02fg 10.88±0.89e 57.26±2.26e 25.23±1.24d 123.26±1.15g 32.01±1.04ab N1 31.37±1.72ef 14.19±1.34bcd 71.65±4.50c 31.14±1.68bc 148.34±2.45d 26.86±2.43d N2 32.84±0.27de 15.17±0.49bc 63.65±1.62d 27.94±1.05cd 139.59±2.45e 30.77±0.38abc $\bar x $ 31.37 13.41 64.19 28.1 137.06 29.88 P S <0.001 0.025 <0.001 <0.001 <0.001 0.143 N <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 S×N <0.001 0.054 <0.001 0.258 <0.001 0.004 1) 同列数据后不同小写字母表示差异显著 (P<0.05, Duncan’s 法)
1) Different lowercase letters in the same column indicated significant difference (P<0.05, Duncan’s test) -
[1] EHRENBERGEROVÁ L, CIENCIALA E, KUČERA A, et al. Carbon stock in agroforestry coffee plantations with different shade trees in Villa Rica, Peru[J]. Agroforest Syst, 2016, 90(3): 433-445. doi: 10.1007/s10457-015-9865-z
[2] 刘小刚, 万梦丹, 齐韵涛, 等. 不同遮阴下亏缺灌溉对小粒咖啡生长和水光利用的影响[J]. 农业机械学报, 2017, 48(1): 191-197. [3] FRANCK N, VAAST P. Limitation of coffee leaf photosynthesis by stomatal conductance and light availability under different shade levels[J]. Trees, 2009, 23(4): 761-769. doi: 10.1007/s00468-009-0318-z
[4] ARAUJO W L, DIAS P C, MORAES G A B K, et al. Limitations to photosynthesis in coffee leaves from different canopy positions[J]. Plant Physiol Biochem, 2008, 46(10): 884-890. doi: 10.1016/j.plaphy.2008.05.005
[5] BOSSELMANN A S, DONS K, OBERTHUR T, et al. The influence of shade trees on coffee quality in small holder coffee agroforestry systems in Southern Colombia[J]. Agric Ecosyst Environ, 2009, 129(1/2/3): 253-260.
[6] CHAVES A R M, TEN-CATEN A, PINHEIRO H A, et al. Seasonal changes in photoprotective mechanisms of leaves from shaded and unshaded field-grown coffee (Coffea arabica L.) trees[J]. Trees, 2008, 22(3): 351-361. doi: 10.1007/s00468-007-0190-7
[7] 张岩, 刘小刚, 万梦丹, 等. 小粒咖啡光合特性和抗氧化物酶对有限灌溉和氮素的响应[J]. 排灌机械工程学报, 2015, 33(11): 991-1000. doi: 10.3969/j.issn.1674-8530.15.0173 [8] 李建明, 潘铜华, 王玲慧, 等. 水肥耦合对番茄光合、产量及水分利用效率的影响[J]. 农业工程学报, 2014, 30(10): 82-90. doi: 10.3969/j.issn.1002-6819.2014.10.010 [9] 谭娟, 郭晋川, 吴建强, 等. 不同灌溉方式下甘蔗光合特性[J]. 农业工程学报, 2016, 32(11): 150-158. doi: 10.11975/j.issn.1002-6819.2016.11.022 [10] 刘小刚, 郝琨, 韩志慧, 等. 水氮耦合对干热区小粒咖啡产量和品质的影响[J]. 农业机械学报, 2016, 47(2): 143-150. [11] NAZARENO R B, OLIVEIRA C A D, SANZONOWICZ C, et al. Initial growth of Rubi coffee plant in response to nitrogen, phosphorus and potassium and water regimes[J]. Pesqui Agropecu Bras, 2003, 38(8): 903-910. doi: 10.1590/S0100-204X2003000800002
[12] FENILLI T A B, REICHARDT K, BACCHI O O S, et al. The N-15 isotope to evaluate fertilizer nitrogen absorption efficiency by the coffee plant[J]. An Acad Bras Cienc, 2007, 79(4): 767-776. doi: 10.1590/S0001-37652007000400015
[13] 蔡传涛, 蔡志全, 解继武, 等. 田间不同水肥管理下小粒咖啡的生长和光合特性[J]. 应用生态学报, 2004, 15(7): 1207-1212. doi: 10.3321/j.issn:1001-9332.2004.07.021 [14] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. [15] 张亚琦, 李淑文, 付巍, 等. 施氮对杂交谷子产量与光合特性及水分利用效率的影响[J]. 植物营养与肥料学报, 2014, 20(5): 1119-1126. [16] 朱巧玲, 冷佳奕, 叶庆生. 黑毛石斛和长距石斛的光合特性[J]. 植物学报, 2013, 48(2): 151-159. [17] REN B, CUI H, CAMBERATO J J, et al. Effects of shading on the photosynthetic characteristics and mesophyll cell ultrastructure of summer maize[J]. Sci Nat, 2016, 103: 67. doi: 10.1007/s00114-016-1392-x.
[18] 张元帅, 冯伟, 张海艳, 等. 遮阴和施氮对冬小麦旗叶光合特性及产量的影响[J]. 中国生态农业学报, 2016, 24(9): 1177-1184. [19] 万梦丹, 刘小刚, 徐航, 等. 不同灌水和光强条件下小粒咖啡叶片光响应及光合生理特征[J]. 排灌机械工程学报, 2016, 34(9): 795-803. [20] LI H, JIANG D, WOLLENWEBER B, et al. Effects of shading on morphology, physiology and grain yield of winter wheat[J]. Eur J Agron, 2010, 33(4): 267-275. doi: 10.1016/j.eja.2010.07.002
[21] 郭翠花, 高志强, 苗果园. 花后遮阴对小麦旗叶光合特性及籽粒产量和品质的影响[J]. 作物学报, 2010, 36(4): 673-679. [22] 郝琨, 刘小刚, 张岩, 等. 干旱胁迫–复水与氮肥耦合对小粒咖啡生长和水氮生产力的影响[J]. 应用生态学报, 2017, 28(12): 4034-4042. [23] 彭晓邦, 蔡靖, 姜在民, 等. 光能竞争对农林复合生态系统生产力的影响[J]. 生态学报, 2009, 29(1): 545-552. doi: 10.3321/j.issn:1000-0933.2009.01.065 [24] 赵育民, 牛树奎, 王军邦, 等. 植被光能利用率研究进展[J]. 生态学杂志, 2007, 26(9): 1471-1477. [25] 张岁岐, 山仑. 植物水分利用效率及其研究进展[J]. 干旱地区农业研究, 2002, 20(4): 1-5. doi: 10.3321/j.issn:1000-7601.2002.04.001 [26] 肖生春, 肖洪浪, 段争虎. 干旱沙漠地区春小麦的水分与氮肥利用效率研究[J]. 中国沙漠, 2004, 24(3): 360-364. doi: 10.3321/j.issn:1000-694X.2004.03.018 [27] 王林, 王琦, 张恩和, 等. 间作与施氮对秸秆覆盖作物生产力和水分利用效率的影响[J]. 中国生态农业学报, 2014, 22(8): 955-964. [28] HAO K, LIU X, HAN Z, et al. Effects of drip irrigation modes on growth and physiological characteristics of Arabica coffee under different N levels[J]. J Drain Irrig Machine Engineer, 2017, 35(10): 912-920.