Operational effects of unmanned helicopters for pesticide spraying in rice field
-
摘要:目的
测试和对比电动单旋翼与电动多旋翼植保无人机在水稻田间的作业效果。
方法测试的植保无人机为HY-B-15L型单旋翼植保无人机(单旋翼机)和MG-1S型多旋翼植保无人机(多旋翼机)。以一定比例的罗丹明B与善思纳米农药的混合溶液作为喷施溶液,通过改变无人机作业高度和农药喷洒量进行田间喷施试验,采用荧光示踪剂法和水敏纸图像分析法获得2种无人机在不同喷施条件下喷施的雾滴在靶标上的沉积效果。按田间药效调查准则,调查不同处理下的纳米农药对水稻病虫害的防治效果。
结果2种无人机喷施的雾滴在各采样点上的沉积量随农药喷洒量的增加而增加,当农药喷洒量为66.67和100.00 mL·hm–2时,单旋翼机在各采样点上的沉积量比喷洒量为46.67 mL·hm–2时的分别增加了48.50%和137.73%,多旋翼机分别增加了66.60%和111.88%。作业高度影响了无人机喷施雾滴在采样点上的沉积量和沉积均匀性,当作业高度由1.5 m增加至2.5 m时,单旋翼机喷施的雾滴在采样点上的沉积量和沉积均匀性分别降低了19.3%和53.6%、多旋翼机分别降低了48.7%和22.9%。在4种喷施条件下,单旋翼机在采样点上的沉积量比多旋翼机同条件下分别高出85.8%、26.5%、59.4%和123.4%。单旋翼机在1.5 m和46.67 mL·hm–2作业条件下,农药对稻飞虱Nilaparvata lugens、稻纵卷叶螟Cnaphalocrocis medinalis、稻秆潜蝇Chlorops oryzae、细菌性条纹病及稻瘟病5种水稻病虫害的防治效果最好,防效分别为87.63%、76.67%、84.08%、59.26%和82.33%;多旋翼机在1.5 m和66.67 mL·hm–2作业条件下,农药对上述水稻病虫害的防治效果最好,防效分别为86.54%、78.62%、89.47%、66.67%和83.33%。
结论2种植保无人机由于旋翼风场不同,导致雾滴沉积效果不同,单旋翼植保无人机喷施效果更好;2种无人机喷施的农药最终对水稻病虫害的防治效果无明显差异,且防治效果均达到国家防效标准。
Abstract:ObjectiveTo test and compare the operation effects of single-rotor unmanned aerial vehicle (UAV) type HY-B-15L and multi-rotor UAV type MG-1S on pest and disease control in rice field.
MethodThe mixing solution of rhodamine-B and nano-pesticide was selected to spray in rice field, and field spraying experiments were carried out by changing the working altitude of helicopter and the amount of pesticide spraying. The polyester fiber cards and water-sensitive papers deposited by droplets were collected and analyzed by fluorescence spectrophotometer and image analysis software “DepositScan” to obtain deposition effects of the droplets.
ResultThe deposition of droplets increased with the increase of pesticide application. Compared with 46.67 mL·hm–2 pesticide, when pesticide application was 66.67 or 100.00 mL·hm–2, the deposition of droplets sprayed by single-rotor UAV increased by 48.50% or 137.73% respectively, while the deposition of droplets sprayed by multi-rotor UAV increased by 66.60% or 111.88% respectively. The spraying height of UAV influenced the deposition and uniformity of droplets on the sampling point. When the spraying height ascended from 1.5 m to 2.5 m, the deposition and uniformity of droplets decreased by 19.3% and 53.6% respectively for single-rotor UAV, and decreased by 48.7% and 22.9% respectively for multi-rotor UAV. The spraying performances of single-rotor UAV were better than those of multi-rotor UAV under four spraying conditions. Compared with multi-rotor UAV, the deposition of single-rotor UAV increased by 85.8%, 26.5%, 59.4% and 123.4% from treatment 1 to treatment 4. When single-rotor UAV worked at the height of 1.5 m and a dosage of 46.67 mL·hm–2, the preventive effect of pesticide was the best which were 87.63%, 76.67%, 84.08%, 59.26% and 82.33% respectively against Nilaparvata lugens, Cnaphalocrocis medinalis, Chlorops oryzae, bacterial leaf streak and rice blast. When multi-rotor UAV worked at 1.5 m and a dosage of 66.67 mL·hm–2, the preventive effects against those rice pests and diseases were close to the former and were 86.54%, 78.62%, 89.47%, 66.67% and 83.33% respectively.
ConclusionBecause of different wind field below the UAV rotor, the droplet deposition of two UAVs are different. The spraying effect of single-rotor UAV is better than that of multi-rotor UAV, but there is no significant difference of control effect between two UAVs. The preventive effects of pesticides sprayed by both UAVs can reach the criterion of China.
-
-
表 1 植保无人机的主要性能参数1)
Table 1 Main performance index of protection UAV
机型
Model作业速度/(m·s–1)
Spraying speed作业高度/m
Spraying height喷头数量
Nozzle number单喷头流量/
(mL·min–1)
Single nozzle flow总喷施流量/
(mL·min–1)
Total flow最大载荷量/L
Maximum loadHY-B-15L 1~8 1~3 5 200~400 1 000~2 000 15 MG-1S 1~7 1~5 4 379 1 516 10 1) 喷头类型均为扇形喷头,有效喷幅 4~7 m
1) The nozzle type was fan-shaped nozzle and the effective spraying swaths ranged from four to seven meters表 2 试验参数的设置
Table 2 The setting of test parameters
机型
Model处理
Treatment喷洒量/(mL·hm–2)
Spray application作业速度/(m·s–1)
Spraying speed作业高度/m
Spraying heightHY-B-15L T1 46.67 6.0 1.5 T2 66.67 4.2 1.5 T3 100.00 2.8 1.5 T4 46.67 4.0 2.5 MG-1S T5 46.67 3.2 1.5 T6 66.67 2.2 1.5 T7 100.00 1.5 1.5 T8 46.67 2.3 2.5 表 3 不同喷洒量条件下2种机型喷嘴的雾滴粒径
Table 3 The droplet diameters of two kinds of nozzles under different spray applications
机型
Model喷嘴型号
Nozzle model雾滴分类
Droplet classification雾滴粒径 Droplet diameter/μm 46.67 mL·min–1 66.67 mL·min–1 100.00 mL·min–1 MG-1S 11001 VS Dv0.1 50.65 49.22 49.57 Dv0.5 111.80 111.20 108.20 Dv0.9 193.10 200.10 174.10 HY-B-15L 110-015-VP Dv0.1 57.62 60.89 60.29 Dv0.5 132.20 127.90 123.60 Dv0.9 238.20 208.00 203.10 表 4 不同处理2种机型无人机在各个采样点的雾滴沉积密度
Table 4 The droplet deposition densities of two UAVs on different sample points under different treatments
个·cm–2 采样点
Sample pointHY-B-15L MG-1S T1 T2 T3 T4 T5 T6 T7 T8 –5 4.80 2.85 4.10 4.00 3.05 1.25 0.50 3.65 –4 4.10 1.60 2.40 12.35 7.80 6.90 9.10 8.65 –3 5.75 4.65 15.80 21.35 16.65 23.45 42.15 15.05 –2 21.65 46.65 27.90 34.20 34.50 49.25 69.65 31.10 –1 80.45 137.85 88.70 77.60 86.65 98.45 78.70 58.35 0 64.20 86.10 55.60 58.35 78.50 88.55 66.30 42.10 1 48.15 68.50 62.70 20.35 56.85 65.05 53.45 58.35 2 30.30 37.20 34.00 17.80 31.70 30.00 55.20 23.35 3 8.30 11.90 19.80 5.30 12.20 5.50 25.85 14.00 4 0 0 0 0 0.80 5.90 10.00 3.90 5 0 0 0 0 0 0 21.00 4.25 表 5 不同作业高度下2种无人机的有效沉积区域
Table 5 The effective spray area of two UAVs under different operating heights
作业高度/m
Spraying
height喷洒量/(mL·min–1 )
Spray applicationHY-B-15L MG-1S 1.5 46.67 –2~2 –3~2 66.67 –2~2 –3~2 100.00 –3~3 –3~3 2.5 46.67 –3~2 –3~2 表 6 不同处理2种无人机的雾滴沉积结果
Table 6 The droplet deposition results of two UAVs under different treatments
机型
Model处理
Treatment沉积量/(mg·cm–2)
Deposition极差值/(mg·cm–2)
Extreme range变异系数/%
Coefficient of variationHY-B-15L T1 0.239 0 0.166 6 29.91 T2 0.354 8 0.262 8 29.50 T3 0.568 1 0.569 4 36.27 T4 0.192 8 0.250 1 45.94 MG-1S T5 0.168 3 0.142 0 29.19 T6 0.280 4 0.342 1 42.18 T7 0.356 5 0.238 8 25.65 T8 0.086 3 0.082 5 35.60 -
[1] 贺奇, 杨锋, 马洪文, 等. 1991—2010年宁夏水稻病虫害发生特征与经济损失分析[J]. 环境昆虫学报, 2016, 38(3): 500-507. [2] 吕信河, 肖丽萍, 李涛斌, 等. 我国水稻植保机械存在的问题及相应对策[J]. 南方农机, 2016, 47(3): 47-49. doi: 10.3969/j.issn.1672-3872.2016.03.043 [3] 陈富启, 刘暮莲, 马德发, 等. 几种药剂对水稻稻飞虱的田间防效试验[J]. 广西植保, 2017, 30(1): 28-29. doi: 10.3969/j.issn.1003-8779.2017.01.007 [4] 张东彦, 兰玉彬, 陈立平, 等. 中国农业航空施药技术研究进展与展望[J]. 农业机械学报, 2014, 45(10): 53-59. doi: 10.6041/j.issn.1000-1298.2014.10.009 [5] 薛新宇. 农业航空植保技术现状[J]. 农业技术与装备, 2014(5): 16-18. [6] LAN Y B, CHEN S D, FRITZ B K. Current status and future trends of precision agricultural aviation technologies[J]. Int J Agric Biol, 2017, 10(3): 1-17.
[7] WANG Z G, LAN Y B, HOFFMANN W C, et al. Low altitude and multiple helicopter formation in precision agriculture//[C]. ASABE Annual International Meeting, Kansas City, USA, 2013.
[8] 王昌陵, 何雄奎, 王潇楠, 等. 基于空间质量平衡法的植保无人机施药雾滴沉积分布特性测试[J]. 农业工程学报, 2016, 32(24): 89-97. doi: 10.11975/j.issn.1002-6819.2016.24.012 [9] 薛新宇, 秦维彩, 孙竹, 等. N-3型无人直升机施药方式对稻飞虱和稻纵卷叶螟防治效果的影响[J]. 植物保护学报, 2013, 40(3): 273-278. [10] 陈盛德, 兰玉彬, BRADLEY K F, et al. 多旋翼无人机旋翼下方风场对航空喷施雾滴沉积的影响[J]. 农业机械学报, 2017, 48(8): 105-113. [11] 陈盛德, 兰玉彬, 李继宇, 等. 小型无人直升机喷雾参数对杂交水稻冠层雾滴沉积分布的影响[J]. 农业工程学报, 2016, 32(17): 40-46. doi: 10.11975/j.issn.1002-6819.2016.17.006 [12] CHEN S D, LAN Y B, LI J Y, et al. Effect of wind field below unmanned helicopter on droplet deposition distribution of aerial spraying[J]. Int J Agric Biol, 2017, 10(3): 67-77.
[13] 中华人民共和国农业部农药检定所. 农药田间药效试验准则(一)杀虫剂防治水稻稻飞虱: GB/T179804—2000[S]. 北京: 中国标准出版社, 2000. [14] 中华人民共和国农业部农药检定所. 农药田间药效试验准则(一)杀虫剂防治稻纵卷叶螟: GB/T179802—2000[S]. 北京: 中国标准出版社, 2000. [15] 中华人民共和国农业部农药检定所. 稻瘟病测报调查规范: GB/T15790—2009[S]. 北京: 中国标准出版社, 2009. [16] 中华人民共和国农业部农药检定所. 农药田间药效试验准则(二)第105部分: 杀菌剂防治水稻细菌性条斑病: GB/T17980105—2004[S]. 北京: 中国标准出版社, 2004. [17] 贾卫东, 薛飞, 李成, 等. 荷电雾滴群撞击界面过程的PDPA测试[J]. 农业机械学报, 2012, 43(8): 78-82. doi: 10.6041/j.issn.1000-1298.2012.08.015 [18] GUPTA A, KUMAR R. Droplet impingement and breakup on a dry surface[J]. Comput Fluids, 2010, 39(9): 1696-1703.