• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

植保无人机水稻田间农药喷施的作业效果

张海艳, 兰玉彬, 文晟, 尹选春, 梁冰, 田维逵

张海艳, 兰玉彬, 文晟, 等. 植保无人机水稻田间农药喷施的作业效果[J]. 华南农业大学学报, 2019, 40(1): 116-124. DOI: 10.7671/j.issn.1001-411X.201802028
引用本文: 张海艳, 兰玉彬, 文晟, 等. 植保无人机水稻田间农药喷施的作业效果[J]. 华南农业大学学报, 2019, 40(1): 116-124. DOI: 10.7671/j.issn.1001-411X.201802028
ZHANG Haiyan, LAN Yubin, WEN Sheng, et al. Operational effects of unmanned helicopters for pesticide spraying in rice field[J]. Journal of South China Agricultural University, 2019, 40(1): 116-124. DOI: 10.7671/j.issn.1001-411X.201802028
Citation: ZHANG Haiyan, LAN Yubin, WEN Sheng, et al. Operational effects of unmanned helicopters for pesticide spraying in rice field[J]. Journal of South China Agricultural University, 2019, 40(1): 116-124. DOI: 10.7671/j.issn.1001-411X.201802028

植保无人机水稻田间农药喷施的作业效果

基金项目: 国家重点研发计划项目(2016YFD0200700);广州市科技计划项目(201707010047)
详细信息
    作者简介:

    张海艳(1992—),女,硕士研究生,E-mail:1322366847@qq.com

    通讯作者:

    兰玉彬(1961—),男,教授,博士,E-mail: ylan@scau.edu.cn

  • 中图分类号: S49

Operational effects of unmanned helicopters for pesticide spraying in rice field

  • 摘要:
    目的 

    测试和对比电动单旋翼与电动多旋翼植保无人机在水稻田间的作业效果。

    方法 

    测试的植保无人机为HY-B-15L型单旋翼植保无人机(单旋翼机)和MG-1S型多旋翼植保无人机(多旋翼机)。以一定比例的罗丹明B与善思纳米农药的混合溶液作为喷施溶液,通过改变无人机作业高度和农药喷洒量进行田间喷施试验,采用荧光示踪剂法和水敏纸图像分析法获得2种无人机在不同喷施条件下喷施的雾滴在靶标上的沉积效果。按田间药效调查准则,调查不同处理下的纳米农药对水稻病虫害的防治效果。

    结果 

    2种无人机喷施的雾滴在各采样点上的沉积量随农药喷洒量的增加而增加,当农药喷洒量为66.67和100.00 mL·hm–2时,单旋翼机在各采样点上的沉积量比喷洒量为46.67 mL·hm–2时的分别增加了48.50%和137.73%,多旋翼机分别增加了66.60%和111.88%。作业高度影响了无人机喷施雾滴在采样点上的沉积量和沉积均匀性,当作业高度由1.5 m增加至2.5 m时,单旋翼机喷施的雾滴在采样点上的沉积量和沉积均匀性分别降低了19.3%和53.6%、多旋翼机分别降低了48.7%和22.9%。在4种喷施条件下,单旋翼机在采样点上的沉积量比多旋翼机同条件下分别高出85.8%、26.5%、59.4%和123.4%。单旋翼机在1.5 m和46.67 mL·hm–2作业条件下,农药对稻飞虱Nilaparvata lugens、稻纵卷叶螟Cnaphalocrocis medinalis、稻秆潜蝇Chlorops oryzae、细菌性条纹病及稻瘟病5种水稻病虫害的防治效果最好,防效分别为87.63%、76.67%、84.08%、59.26%和82.33%;多旋翼机在1.5 m和66.67 mL·hm–2作业条件下,农药对上述水稻病虫害的防治效果最好,防效分别为86.54%、78.62%、89.47%、66.67%和83.33%。

    结论 

    2种植保无人机由于旋翼风场不同,导致雾滴沉积效果不同,单旋翼植保无人机喷施效果更好;2种无人机喷施的农药最终对水稻病虫害的防治效果无明显差异,且防治效果均达到国家防效标准。

    Abstract:
    Objective 

    To test and compare the operation effects of single-rotor unmanned aerial vehicle (UAV) type HY-B-15L and multi-rotor UAV type MG-1S on pest and disease control in rice field.

    Method 

    The mixing solution of rhodamine-B and nano-pesticide was selected to spray in rice field, and field spraying experiments were carried out by changing the working altitude of helicopter and the amount of pesticide spraying. The polyester fiber cards and water-sensitive papers deposited by droplets were collected and analyzed by fluorescence spectrophotometer and image analysis software “DepositScan” to obtain deposition effects of the droplets.

    Result 

    The deposition of droplets increased with the increase of pesticide application. Compared with 46.67 mL·hm–2 pesticide, when pesticide application was 66.67 or 100.00 mL·hm–2, the deposition of droplets sprayed by single-rotor UAV increased by 48.50% or 137.73% respectively, while the deposition of droplets sprayed by multi-rotor UAV increased by 66.60% or 111.88% respectively. The spraying height of UAV influenced the deposition and uniformity of droplets on the sampling point. When the spraying height ascended from 1.5 m to 2.5 m, the deposition and uniformity of droplets decreased by 19.3% and 53.6% respectively for single-rotor UAV, and decreased by 48.7% and 22.9% respectively for multi-rotor UAV. The spraying performances of single-rotor UAV were better than those of multi-rotor UAV under four spraying conditions. Compared with multi-rotor UAV, the deposition of single-rotor UAV increased by 85.8%, 26.5%, 59.4% and 123.4% from treatment 1 to treatment 4. When single-rotor UAV worked at the height of 1.5 m and a dosage of 46.67 mL·hm–2, the preventive effect of pesticide was the best which were 87.63%, 76.67%, 84.08%, 59.26% and 82.33% respectively against Nilaparvata lugens, Cnaphalocrocis medinalis, Chlorops oryzae, bacterial leaf streak and rice blast. When multi-rotor UAV worked at 1.5 m and a dosage of 66.67 mL·hm–2, the preventive effects against those rice pests and diseases were close to the former and were 86.54%, 78.62%, 89.47%, 66.67% and 83.33% respectively.

    Conclusion 

    Because of different wind field below the UAV rotor, the droplet deposition of two UAVs are different. The spraying effect of single-rotor UAV is better than that of multi-rotor UAV, but there is no significant difference of control effect between two UAVs. The preventive effects of pesticides sprayed by both UAVs can reach the criterion of China.

  • 图  1   试验方案示意图

    Figure  1.   The schematic diagram of test plan

    图  2   田间试验布点图

    a: 无人机作业图;b: 布点图;c: 水敏纸和麦乐卡布置图;d: 病虫害调查图

    Figure  2.   The diagram of test layouts in field

    a: Spray test site; b: Single point layouts; c: Droplet collection card layouts; d: Rice diseases and pests survy

    图  3   不同喷洒量下2架无人机的雾滴沉积量曲线图(作业高度1.5 m)

    Figure  3.   The curves of droplet depositions of two UAVs under different spray applications(Spraying height was 1.5 m)

    图  4   不同作业高度下2架无人机在各个采样点的雾滴沉积量曲线图

    Figure  4.   The curves of droplet depositions of two UAVs under different spraying heights

    图  5   不同喷施量2种无人机对水稻病虫害防治效果

    1:稻飞虱, 2: 稻纵卷叶螟, 3: 稻秆潜蝇, 4: 细菌性条纹病, 5:稻瘟病

    Figure  5.   The control efficacy of two UAVs against rice pests and diseases under different pesticide applications

    1: Nilaparvata lugens, 2: Cnaphalocrocis medinalis , 3: Chlorops oryzae, 4: Bacterial stripe, 5: Rice blast

    图  6   不同作业高度条件下2种无人机对水稻病虫害的防治效果

    1:稻飞虱, 2: 稻纵卷叶螟, 3: 稻秆潜蝇, 4: 细菌性条纹病, 5:稻瘟病

    Figure  6.   The control efficacy of two UAVs against rice pests and diseases of under different spraying heights

    1: Nilaparvata lugens, 2: Cnaphalocrocis medinalis , 3: Chlorops oryzae, 4: Bacterial stripe, 5: Rice blast

    表  1   植保无人机的主要性能参数1)

    Table  1   Main performance index of protection UAV

    机型
    Model
    作业速度/(m·s–1)
    Spraying speed
    作业高度/m
    Spraying height
    喷头数量
    Nozzle number
    单喷头流量/
    (mL·min–1)
    Single nozzle flow
    总喷施流量/
    (mL·min–1)
    Total flow
    最大载荷量/L
    Maximum load
    HY-B-15L 1~8 1~3 5 200~400 1 000~2 000 15
    MG-1S 1~7 1~5 4 379 1 516 10
     1) 喷头类型均为扇形喷头,有效喷幅 4~7 m
     1) The nozzle type was fan-shaped nozzle and the effective spraying swaths ranged from four to seven meters
    下载: 导出CSV

    表  2   试验参数的设置

    Table  2   The setting of test parameters

    机型
    Model
    处理
    Treatment
    喷洒量/(mL·hm–2)
    Spray application
    作业速度/(m·s–1)
    Spraying speed
    作业高度/m
    Spraying height
    HY-B-15L T1 46.67 6.0 1.5
    T2 66.67 4.2 1.5
    T3 100.00 2.8 1.5
    T4 46.67 4.0 2.5
    MG-1S T5 46.67 3.2 1.5
    T6 66.67 2.2 1.5
    T7 100.00 1.5 1.5
    T8 46.67 2.3 2.5
    下载: 导出CSV

    表  3   不同喷洒量条件下2种机型喷嘴的雾滴粒径

    Table  3   The droplet diameters of two kinds of nozzles under different spray applications

    机型
    Model
    喷嘴型号
    Nozzle model
    雾滴分类
    Droplet classification
    雾滴粒径 Droplet diameter/μm
    46.67 mL·min–1 66.67 mL·min–1 100.00 mL·min–1
    MG-1S 11001 VS Dv0.1 50.65 49.22 49.57
    Dv0.5 111.80 111.20 108.20
    Dv0.9 193.10 200.10 174.10
    HY-B-15L 110-015-VP Dv0.1 57.62 60.89 60.29
    Dv0.5 132.20 127.90 123.60
    Dv0.9 238.20 208.00 203.10
    下载: 导出CSV

    表  4   不同处理2种机型无人机在各个采样点的雾滴沉积密度

    Table  4   The droplet deposition densities of two UAVs on different sample points under different treatments 个·cm–2

    采样点
    Sample point
    HY-B-15L MG-1S
    T1 T2 T3 T4 T5 T6 T7 T8
    –5 4.80 2.85 4.10 4.00 3.05 1.25 0.50 3.65
    –4 4.10 1.60 2.40 12.35 7.80 6.90 9.10 8.65
    –3 5.75 4.65 15.80 21.35 16.65 23.45 42.15 15.05
    –2 21.65 46.65 27.90 34.20 34.50 49.25 69.65 31.10
    –1 80.45 137.85 88.70 77.60 86.65 98.45 78.70 58.35
    0 64.20 86.10 55.60 58.35 78.50 88.55 66.30 42.10
    1 48.15 68.50 62.70 20.35 56.85 65.05 53.45 58.35
    2 30.30 37.20 34.00 17.80 31.70 30.00 55.20 23.35
    3 8.30 11.90 19.80 5.30 12.20 5.50 25.85 14.00
    4 0 0 0 0 0.80 5.90 10.00 3.90
    5 0 0 0 0 0 0 21.00 4.25
    下载: 导出CSV

    表  5   不同作业高度下2种无人机的有效沉积区域

    Table  5   The effective spray area of two UAVs under different operating heights

    作业高度/m
    Spraying
    height
    喷洒量/(mL·min–1 )
    Spray application
    HY-B-15L MG-1S
    1.5 46.67 –2~2 –3~2
    66.67 –2~2 –3~2
    100.00 –3~3 –3~3
    2.5 46.67 –3~2 –3~2
    下载: 导出CSV

    表  6   不同处理2种无人机的雾滴沉积结果

    Table  6   The droplet deposition results of two UAVs under different treatments

    机型
    Model
    处理
    Treatment
    沉积量/(mg·cm–2)
    Deposition
    极差值/(mg·cm–2)
    Extreme range
    变异系数/%
    Coefficient of variation
    HY-B-15L T1 0.239 0 0.166 6 29.91
    T2 0.354 8 0.262 8 29.50
    T3 0.568 1 0.569 4 36.27
    T4 0.192 8 0.250 1 45.94
    MG-1S T5 0.168 3 0.142 0 29.19
    T6 0.280 4 0.342 1 42.18
    T7 0.356 5 0.238 8 25.65
    T8 0.086 3 0.082 5 35.60
    下载: 导出CSV
  • [1] 贺奇, 杨锋, 马洪文, 等. 1991—2010年宁夏水稻病虫害发生特征与经济损失分析[J]. 环境昆虫学报, 2016, 38(3): 500-507.
    [2] 吕信河, 肖丽萍, 李涛斌, 等. 我国水稻植保机械存在的问题及相应对策[J]. 南方农机, 2016, 47(3): 47-49. doi: 10.3969/j.issn.1672-3872.2016.03.043
    [3] 陈富启, 刘暮莲, 马德发, 等. 几种药剂对水稻稻飞虱的田间防效试验[J]. 广西植保, 2017, 30(1): 28-29. doi: 10.3969/j.issn.1003-8779.2017.01.007
    [4] 张东彦, 兰玉彬, 陈立平, 等. 中国农业航空施药技术研究进展与展望[J]. 农业机械学报, 2014, 45(10): 53-59. doi: 10.6041/j.issn.1000-1298.2014.10.009
    [5] 薛新宇. 农业航空植保技术现状[J]. 农业技术与装备, 2014(5): 16-18.
    [6]

    LAN Y B, CHEN S D, FRITZ B K. Current status and future trends of precision agricultural aviation technologies[J]. Int J Agric Biol, 2017, 10(3): 1-17.

    [7]

    WANG Z G, LAN Y B, HOFFMANN W C, et al. Low altitude and multiple helicopter formation in precision agriculture//[C]. ASABE Annual International Meeting, Kansas City, USA, 2013.

    [8] 王昌陵, 何雄奎, 王潇楠, 等. 基于空间质量平衡法的植保无人机施药雾滴沉积分布特性测试[J]. 农业工程学报, 2016, 32(24): 89-97. doi: 10.11975/j.issn.1002-6819.2016.24.012
    [9] 薛新宇, 秦维彩, 孙竹, 等. N-3型无人直升机施药方式对稻飞虱和稻纵卷叶螟防治效果的影响[J]. 植物保护学报, 2013, 40(3): 273-278.
    [10] 陈盛德, 兰玉彬, BRADLEY K F, et al. 多旋翼无人机旋翼下方风场对航空喷施雾滴沉积的影响[J]. 农业机械学报, 2017, 48(8): 105-113.
    [11] 陈盛德, 兰玉彬, 李继宇, 等. 小型无人直升机喷雾参数对杂交水稻冠层雾滴沉积分布的影响[J]. 农业工程学报, 2016, 32(17): 40-46. doi: 10.11975/j.issn.1002-6819.2016.17.006
    [12]

    CHEN S D, LAN Y B, LI J Y, et al. Effect of wind field below unmanned helicopter on droplet deposition distribution of aerial spraying[J]. Int J Agric Biol, 2017, 10(3): 67-77.

    [13] 中华人民共和国农业部农药检定所. 农药田间药效试验准则(一)杀虫剂防治水稻稻飞虱: GB/T179804—2000[S]. 北京: 中国标准出版社, 2000.
    [14] 中华人民共和国农业部农药检定所. 农药田间药效试验准则(一)杀虫剂防治稻纵卷叶螟: GB/T179802—2000[S]. 北京: 中国标准出版社, 2000.
    [15] 中华人民共和国农业部农药检定所. 稻瘟病测报调查规范: GB/T15790—2009[S]. 北京: 中国标准出版社, 2009.
    [16] 中华人民共和国农业部农药检定所. 农药田间药效试验准则(二)第105部分: 杀菌剂防治水稻细菌性条斑病: GB/T17980105—2004[S]. 北京: 中国标准出版社, 2004.
    [17] 贾卫东, 薛飞, 李成, 等. 荷电雾滴群撞击界面过程的PDPA测试[J]. 农业机械学报, 2012, 43(8): 78-82. doi: 10.6041/j.issn.1000-1298.2012.08.015
    [18]

    GUPTA A, KUMAR R. Droplet impingement and breakup on a dry surface[J]. Comput Fluids, 2010, 39(9): 1696-1703.

图(6)  /  表(6)
计量
  • 文章访问数:  1480
  • HTML全文浏览量:  7
  • PDF下载量:  1740
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-09
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2019-01-09

目录

    /

    返回文章
    返回