• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

山药块茎发育过程中淀粉积累及差异蛋白分析

罗海玲, 龚明霞, 周芸伊, 何龙飞

罗海玲, 龚明霞, 周芸伊, 等. 山药块茎发育过程中淀粉积累及差异蛋白分析[J]. 华南农业大学学报, 2018, 39(6): 61-69. DOI: 10.7671/j.issn.1001-411X.2018.06.010
引用本文: 罗海玲, 龚明霞, 周芸伊, 等. 山药块茎发育过程中淀粉积累及差异蛋白分析[J]. 华南农业大学学报, 2018, 39(6): 61-69. DOI: 10.7671/j.issn.1001-411X.2018.06.010
LUO Hailing, GONG Mingxia, ZHOU Yunyi, HE Longfei. Analysis of starch accumulation and differentially expressed proteins during the development of Chinese yam tuber[J]. Journal of South China Agricultural University, 2018, 39(6): 61-69. DOI: 10.7671/j.issn.1001-411X.2018.06.010
Citation: LUO Hailing, GONG Mingxia, ZHOU Yunyi, HE Longfei. Analysis of starch accumulation and differentially expressed proteins during the development of Chinese yam tuber[J]. Journal of South China Agricultural University, 2018, 39(6): 61-69. DOI: 10.7671/j.issn.1001-411X.2018.06.010

山药块茎发育过程中淀粉积累及差异蛋白分析

基金项目: 国家现代农业产业技术体系广西薯类创新团队项目(nycytxgxcxtd-11-01)
详细信息
    作者简介:

    罗海玲(1980—),女,助理研究员,博士研究生,E-mail:40833183@qq.com

    通讯作者:

    何龙飞(1967—)男,教授,博士,E-mail: lfhe@gxu.edu.cn

  • 中图分类号: S184;S632

Analysis of starch accumulation and differentially expressed proteins during the development of Chinese yam tuber

  • 摘要:
    目的 

    明确山药Dioscoreaspp.块茎发育过程中淀粉积累规律,为高产优质山药栽培及育种提供理论依据。

    方法 

    以‘GH16’为材料,测定山药块茎发育过程中淀粉积累变化,并通过石蜡切片观测块茎组织、细胞及淀粉粒变化,采用蛋白质双向电泳技术寻找与块茎物质积累相关的关键蛋白。

    结果 

    在块茎形成初期(4—5月)未见淀粉积累;块茎膨大初期(6月)淀粉粒均匀分布于薄壁组织细胞中,随后块茎细胞、淀粉粒随着山药块茎的发育逐渐增大,淀粉迅速积累;至膨大中后期(9月后),淀粉粒大量积累于靠近维管束周围的薄壁组织细胞中;到膨大后期(11月)块茎细胞达到最大值,细胞纵径和横径分别为121.685和89.572 μm,淀粉积累达到高峰,淀粉粒长径最长达27.608 μm (12月),短径最长达16.450 μm (11月);3个发育时期共有179个蛋白表达发生了显著变化。选取其中差异较大的52个蛋白点进行质谱鉴定,其中31个差异表达的蛋白被鉴定,这些差异蛋白主要是与糖代谢和淀粉合成相关的酶,如6–磷酸葡萄糖酸脱氢酶、果糖–1,6–二磷酸醛缩酶、ATP合成酶α亚基、UTP–葡萄糖–1–磷酸尿苷酰转移酶、磷酸甘油酸激酶1等,它们在膨大初期后表达上调。山药块茎特异蛋白Dioscorin在膨大后期大量积累。

    结论 

    山药块茎的膨大是细胞分裂与细胞膨大及淀粉积累共同作用的结果;块茎发育过程中的主要差异蛋白在糖代谢及淀粉合成过程中起关键作用。

    Abstract:
    Objective 

    To understand the rules of starch accumulation during development of Chinese yam (Dioscoreaspp.) tuber, and provide theoretical references for breeding and cultivation of Chinese yam with high yield and quality.

    Method 

    Using ‘GH16’ as material, starch accumulation during development process of Chinese yam tuber was measured. The changes of tuber tissues, cells and starch grains were studied through paraffin sectioning. The key proteins related to tuber development were discovered by two-dimensional electrophoresis.

    Result 

    There was no starch accumulation in early stage of tuber formation (April to May). In the early expansion stage (June), starch grains distributed uniformly in parenchyma cells. With the development of yam tuber, tuber cells and starch grains enlarged gradually, and starch accumulated rapidly. In the mid and late expansion stages (after September), substantial starch grains distributed near parenchyma cells around vascular bundle. In the late expansion stage, tuber cell size reached the maximum in November with cell longitudinal diameter and transverse diameter reaching 121.685 and 89.572 μm respectively, and starch accumulation reached the peak with longitudinal diameter of starch grain being up to 27.608 μm (December), and transverse diameter being up to 16.450 μm (November). There were 179 differentially expressed proteins to be found. Among them, Fifty-two proteins with relatively larger differences in expression were analyzed by mass spectra, and 31 differentially expressed proteins were identified. Most of them were enzymes related to sugar metabolism and starch synthesis, such as glucose 6-phosphate acid dehydrogenase, fructose-bisphosphatealdolase cytoplasmic isozyme-like, ATP synthetase alpha subunit, UTP-glucose-1-phosphate uridylyltransferase and phosphoglycerate kinase 1, and these were up-regulated after the early stage of tuber formation. Chinese yam tuber specific protein, Dioscorin, was accumulated in the late stage of tuber expansion.

    Conclusion 

    The expansion of Chinese yam tuber is the results of cell division, cell amplification and starch accumulation. The main differentially expressed proteins during development of Chinese yam tuber play the key roles of sugar metabolism and starch synthesis.

  • 图  1   山药块茎发育过程中的形态变化

    各图中数值上凡是具有一个相同小写字母者,表示不同月份间差异不显著(P>0.05,LSD法)

    Figure  1.   Morphological changes during development of Chinese yam tuber

    图  2   山药块茎发育过程中的营养组分含量变化

    各图中数值上凡是具有一个相同小写字母者,表示不同月份间差异不显著(P>0.05,LSD法)

    Figure  2.   Changes of nutrient constituents during development of Chinese yam tuber

    图  3   山药块茎发育的细胞学观察

    A、B和C分别为4、6和12月块茎皮层及其附近组织横切面结构,D、E、F、G、H和I分别为4、5、6、9、11和12月块茎薄壁组织横切面结构;Ep:表皮,Co:皮层,Vc:维管束,Xy:木质部,Pc:薄壁细胞,S:淀粉粒;标尺=100 μm

    Figure  3.   The cytology observation during development of Chinese yam tuber

    图  4   山药块茎发育过程中薄壁细胞与淀粉粒大小变化

    各图中数值上凡是具有一个相同小写字母者,表示不同月份间差异不显著(P>0.05,LSD法)

    Figure  4.   Changes of parenchyma cell and starch grain sizes during development of Chinese yam tuber

    图  5   山药块茎发育过程中的蛋白质双向电泳图

    红色数字为已鉴定的差异蛋白的序号

    Figure  5.   Two-dimensional electrophoresis of proteins during development of Chinese yam tuber

    表  1   等电聚焦参数

    Table  1   Isoelectric focusing (IEF) parameters

    步骤 电压/V 升压模式 时间/h
    S1 50 线性 12
    S2 500 线性 1
    S3 1 000 线性 1
    S4 1 000~10 000 快速 1
    S5 10 000 快速 11
    S6 500 快速 任意时长
    下载: 导出CSV

    表  2   部分差异蛋白质信息列表

    Table  2   Information of partial differentially expressed proteins

    蛋白
    序号
    Mascot数据库
    登陆号
    蛋白名称 得分 Mr 等电点 不同月份相对表达量比值1)
    5/6 5/11 6/11
    126 tr|W7NY18 几丁质酶 75 26 204 4.89 2.73 50.22 18.41
    211 sp|P80052 酸性内切壳多糖酶 106 28 859 4.80 0.28 0.49
    6207 gi|33312115 核酮糖–1,5–二磷酸羧化酶/加氧酶大亚基 151 32 695 5.90 2.15 9.04 4.20
    8427 gi|731391631 阳离子过氧化物酶 61 33 147 4.43 3.38 6.24
    8119 gi|586751268 肽基脯氨酸顺反异构酶 80 26 347 9.26 1.55 3.44 2.20
    1411 gi|46917481 块茎储藏蛋白 318 35 982 5.69 0.16 7.93
    7522 gi|719974028 果糖–1,6–二磷酸醛缩酶 193 40 958 6.04 0.26 0.06 0.23
    7618 gi|603221 6–磷酸葡萄糖酸脱氢酶 110 67 906 8.40 0.43 10.11 23.61
    8707 gi|20160920 ATP合成酶α亚基 66 61 537 8.49 196.00
    9111 gi|1079652 胚胎发育晚期丰富蛋白 145 17 567 9.49 0.12 13.29
    5724 gi|449456208 UTP–葡萄糖–1–磷酸尿苷酰转移酶 96 52 062 8.08 0.39 0.41
    3005 gi|672122878 40S核糖体蛋白质 106 18 124 5.82 0.10 19.18
    3522 gi|102139814 磷酸甘油酸激酶 198 42 269 9.58 0.30 2.80
    4209 gi|12229919 蛋白酶α亚基 63 27 506 5.75 0.18 2.63
    4526 gi|732559013 磷酸甘油酸激酶1 89 53 026 5.65 0.12 5.24
    5311 tr|C7E3T8 Dioscorin蛋白 283 31 815 6.10 0.10 0.11
     1)“–”表示该蛋白在2个时期的表达量差异不显著(P>0.05,t检验)
    下载: 导出CSV
  • [1] 裴鉴. 中国植物志: 第16卷: 第1分册[M]. 北京: 科学出版社, 1985.
    [2]

    SHEWRY P R. Tuber storage proteins[J]. Ann Bot, 2003, 91(7): 755-769. doi: 10.1093/aob/mcg084

    [3] 刘梦芸, 门福义. 马铃薯块茎生长发育的研究[J]. 内蒙古农业大学学报(自然科学版), 1987, 8(2): 104-116.
    [4] 王翠松, 张红梅, 李云峰, 等. 马铃薯块茎发育过程中的影响因子[J]. 中国马铃薯, 2003, 17(1): 29-33. doi: 10.3969/j.issn.1672-3635.2003.01.013
    [5]

    FERNIE A R, ROESSNER U, TRETHEWEY R N, et al. The contribution of plastidial phosphoglucomutase to the control of starch synthesis within the potato tuber[J]. Planta, 2001, 213(3): 418-426. doi: 10.1007/s004250100521

    [6] 柳俊, 谢从华. 马铃薯块茎发育机理及其基因表达[J]. 植物学通报, 2001, 18(5): 531-539. doi: 10.3969/j.issn.1674-3466.2001.05.003
    [7]

    AGRAWAL L, CHAKRABORTY S, JAISWAL D K, et al. Comparative proteomics of tuber induction, development and maturation reveal the complexity of tuberization process in potato (Solanum tuberosum L.)[J]. J Proteome Res, 2008, 7(9): 3803-3817. doi: 10.1021/pr8000755

    [8] 张小静, 马铃薯块茎蛋白质双向电泳技术体系的建立及发育相关蛋白质的分析[D]. 兰州: 甘肃农业大学, 2008.
    [9] 刘海霞. 马铃薯块茎离体发育过程的差异蛋白质组[D]. 兰州: 甘肃农业大学, 2013.
    [10] 孙霞. 毕克齐长山药生育和贮藏期间营养成分及相关酶活性的研究[D]. 呼和浩特: 内蒙古农业大学, 2008.
    [11] 龚明霞. 赤霉素调控山药块茎生长的生理和分子机制[D]. 南宁: 广西大学, 2017.
    [12] 孙启善. 山药优质高产栽培实用技术[M]. 北京: 中国农业出版社, 2001
    [13] 梁任繁, 李创珍, 张娟, 等. 山药块茎发育中物质积累及相关代谢酶变化[J]. 作物学报, 2011, 37(5): 903-910.
    [14]

    HOU W C, LIU J S, CHEN H J, et al. Dioscorin, the major tuber storage protein of yam (Dioscorea batatas Decne) with carbonic anhydrase and trypsin inhibitor activities[J]. J Agric Food Chem, 1999, 47(5): 2168-2172. doi: 10.1021/jf980738o

    [15]

    FARHAT I A, OGUNTONA T, NEALE R J, et al. Characterization of starches from West African yams[J]. J Sci Food Agr, 1999, 79(15): 2105-2112. doi: 10.1002/(ISSN)1097-0010

    [16]

    AMANI N G, BULEON A, KAMENAN A, et al. Variability in starch physicochemical and functional properties of yam (Dioscorea sp.) cultivated in Ivory Coast[J]. J Sci Food Agr, 2004, 84(15): 2085-2096. doi: 10.1002/jsfa.1834

    [17]

    OKUNLOLA A, ODEKU O A. Evaluation of starches obtained from four Dioscorea species as binding agent in chloroquine phosphate tablet formulations[J]. Saudi Pharm J, 2011, 19(2): 95-105. doi: 10.1016/j.jsps.2011.01.002

    [18] 中国科学院上海植物生理研究所, 上海市植物生理学会. 现代植物生理学实验指南[M]. 北京: 科学出版社, 1999.
    [19] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
    [20] 王晶英, 敖红, 张杰, 等. 植物生理生化实验技术与原理[M]. 哈尔滨: 东北林业大学出版社, 2003.
    [21] 陆国权, 李秀玲, 丁守仁, 等. 盐酸水解DNS比色法快速测定甘薯淀粉含量的标准方法研究[J]. 中国粮油学报, 2002, 17(1): 25-28. doi: 10.3321/j.issn:1003-0174.2002.01.007
    [22]

    CARPENTIER S C, WITTERS E, LAUKENS K, et al. Preparation of protein extracts from recalcitrant plant tissues: An evaluation of different methods for two-dimensional gel electrophoresis analysis[J]. Proteomics, 2005, 5(10): 2497-2507. doi: 10.1002/(ISSN)1615-9861

    [23]

    YANG L T, LIN H, TAKAHASHI Y, et al. Proteomic analysis of grapevine stem in response to Xylella fastidiosa inoculation[J]. Physiol Mol Plant Pathol, 2011, 75(3): 90-99. doi: 10.1016/j.pmpp.2010.11.002

    [24] 李奇松, 陈军, 林世圣, 等. 水稻籽粒蛋白双向电泳条件的优化及其蛋白组学方法的比较[J]. 作物学报, 2012, 38(5): 921-927.
    [25]

    VREUGDENHIL D, SERGEEVA L I. Gibberellins and tuberization in potato[J]. Potato Res, 1999, 42(3/4): 471-481.

    [26]

    MÜLLER-RÖBER B, SONNEWALD U, WILLMITZER L. Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber storage protein genes[J]. Embo J, 1992, 11(4): 1229-1238.

    [27] 刘薇, 吴晶晶, 陈宏文. 米曲霉6–磷酸葡萄糖脱氢酶基因gsdA的克隆及生物信息学分析[J]. 亚热带植物科学, 2012, 41(3): 11-15.
    [28]

    HUANG J, ZHANG H, WANG J, et al. Molecular cloning and characterization of rice 6-phosphogluconate dehydrogenase gene that is up-regulated by salt stress[J]. Mol Biol Rep, 2003, 30(4): 223-227. doi: 10.1023/A:1026392422995

    [29] 汤晓丽, 拟南芥两个胞质果糖–1, 6–二磷酸醛缩酶基因的新功能初探[D]. 泰安: 山东农业大学, 2013.
    [30]

    HAAKE V, ZRENNER R, SONNEWALD U, et al. A moderate decrease of plastid aldolase activity inhibits photosynthesis, alters the levels of sugars and starch, and inhibits growth of potato plants[J]. Plant J, 1998, 14(2): 147-157. doi: 10.1046/j.1365-313X.1998.00089.x

    [31] 王海云. 牡丹试管苗生根诱导过程中蛋白质表达变化的研究[D]. 郑州: 河南农业大学, 2010.
    [32] 娄沂春, 董海涛, 李德葆, 等. 水稻叶绿体ATP合成酶基因转录丰度受赤霉素诱导调节[J]. 中国水稻科学, 2001, 15(1): 17-20. doi: 10.3321/j.issn:1001-7216.2001.01.004
    [33] 张欣欣, 柳参奎. 水稻线粒体ATP合成酶小亚基基因的鉴定及解析[J]. 分子植物育种, 2003, 1(5): 605-612. doi: 10.3969/j.issn.1672-416X.2003.05.003
    [34]

    YANG C C, LIN K C. Class A dioscorins of various yam species suppress ovalbumin-induced allergic reactions[J]. Immunopharmacol Immunotoxicol, 2014, 36(3): 242-249. doi: 10.3109/08923973.2014.921691

图(5)  /  表(2)
计量
  • 文章访问数:  1667
  • HTML全文浏览量:  1
  • PDF下载量:  1571
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-11
  • 网络出版日期:  2023-05-18
  • 刊出日期:  2018-11-09

目录

    /

    返回文章
    返回