• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

外源磺胺二甲嘧啶对施用粪肥的菜地土壤中微生物群落多样性的影响

王美, 张文娟, 郑粤琪, 陈思远, 孙永学

王美, 张文娟, 郑粤琪, 等. 外源磺胺二甲嘧啶对施用粪肥的菜地土壤中微生物群落多样性的影响[J]. 华南农业大学学报, 2018, 39(6): 24-31. DOI: 10.7671/j.issn.1001-411X.2018.06.005
引用本文: 王美, 张文娟, 郑粤琪, 等. 外源磺胺二甲嘧啶对施用粪肥的菜地土壤中微生物群落多样性的影响[J]. 华南农业大学学报, 2018, 39(6): 24-31. DOI: 10.7671/j.issn.1001-411X.2018.06.005
WANG Mei, ZHANG Wenjuan, ZHENG Yueqi, CHEN Siyuan, SUN Yongxue. Effects of exogenous sulfadiazine on microbial community diversity in vegetable soil applied with manure[J]. Journal of South China Agricultural University, 2018, 39(6): 24-31. DOI: 10.7671/j.issn.1001-411X.2018.06.005
Citation: WANG Mei, ZHANG Wenjuan, ZHENG Yueqi, CHEN Siyuan, SUN Yongxue. Effects of exogenous sulfadiazine on microbial community diversity in vegetable soil applied with manure[J]. Journal of South China Agricultural University, 2018, 39(6): 24-31. DOI: 10.7671/j.issn.1001-411X.2018.06.005

外源磺胺二甲嘧啶对施用粪肥的菜地土壤中微生物群落多样性的影响

基金项目: 国家自然科学基金(31772803);广东省自然科学基金重点项目(2016A030311029)
详细信息
    作者简介:

    王美(1991—),女,硕士研究生,E-mail:m18376727861@163.com

    通讯作者:

    孙永学(1969—),男,教授,博士,E-mail: sunyx@scau.edu.cn

  • 中图分类号: X825

Effects of exogenous sulfadiazine on microbial community diversity in vegetable soil applied with manure

  • 摘要:
    目的 

    明确磺胺二甲嘧啶(SM2)随粪便施入土壤对土壤微生物群落造成的影响,为合理进行养殖场周围土壤环境质量评估和施肥管理提供参考依据。

    方法 

    收集养殖场附近未经抗生素污染的粪便和土壤,构建粪便–土壤模型,设置不同SM2添加剂量的处理,分别为对照组(0)、低剂量组(5 μg·kg–1)、中剂量组(500 μg·kg–1)和高剂量组(5 000 μg·kg–1),并分别于粪便和SM2施入1、7、14和50 d后采集土壤样品,采用Biolog技术以及磷脂脂肪酸(Phospholipid fatty acid,PLFA)标记法对比分析不同处理组土壤微生物群落的碳源利用能力、菌群结构和功能多样性变化。

    结果 

    SM2的施入提高了土壤微生物群落的总体碳源利用能力,中、高剂量组在施入50 d时对除酯类以外的其他碳源利用能力均强于对照组。低剂量组在施入7 d内对各类碳源利用能力增强,中、高剂量SM2的施入可能会影响土壤群落某些优势物种的繁殖和数量分配。随施入时间的延长,土壤微生物群落对不同剂量SM2反应不同,革兰阳性菌、革兰阴性菌以及真菌数量变化显著,放线菌变化不明显。

    结论 

    SM2的施入将长期影响土壤微生物群落的结构与功能多样性。养殖场应及时处理动物排泄物以消除抗生素残留,减少粪肥对土壤环境造成的生态破坏。

    Abstract:
    Objective 

    To determine the effect of sulfadimidine (SM2) applied with manure in soil on microbial community, and provide a basis for reasonably conducting environment quality evaluation and fertilization management of soil around the farm.

    Method 

    Manure and soil around the farm that were not contaminated by antibiotics were collected to construct the manure-soil model. Different SM2 adding dosages were setted, including the control group (0), low dosage group (5 μg·kg–1), medium dosage group (500 μg·kg–1) and high dosage group (5 000 μg·kg–1), and the soil samples were collected on 1, 7, 14 and 50 days respectively after SM2 application. Biolog technology and phospholipid fatty acid (PLFA) labelling were used to compare and analyze the capacities of carbon source utilization, and the structural and functional diversities of soil microbial communities in different treatments.

    Result 

    The application of SM2 improved the overall carbon source utilization capacity of soil microbial community. After applying SM2 for 50 days, the utilization capacities of medium and high dodage groups to all carbon sources except esters were significantly stronger than those of the control group. The capacities of low dodage group utilizing all carbon sources after applying SM2 for 7 days were obviously enhanced. The applications of medium and high SM2 dosages might affect the propagation and quantity distribution of some dominant flora in soil community. With the extension of SM2 application time, the responses of soil microbial community to SM2 at different dosages was different. The quantity changes of Gram-positive bacterium, Gram-negative bacterium and fungi were significant, while the change of actinomycetes number was not obvious.

    Conclusion 

    The application of SM2 will affect the structural and functional diversities of soil microbial communities for a long time. The farm should dispose animal excrements in time to eliminate antibiotic residues, and reduce the ecological damages to soil environment.

  • 图  1   各处理组土壤微生物群落对碳源总体利用能力的变化

    Figure  1.   The overall utilization capacity changes of soil microbial community to all carbon sources in each treatment group

    图  2   各处理组土壤微生物群落对各类碳源利用能力的变化

    Figure  2.   The utilization capacity changes of soil microbial community to each kind of carbon source in each treatment group

    图  3   各处理组土壤微生物群落多样性指数分析

    图中数据为3次重复测定的平均值±标准误;相同施入时间不同处理组的柱子上方凡是有一个相同小写字母者,表示处理间差异不显著(P≥0.05,Tukey HSD法),相同处理组不同施入时间的柱子上方凡是有一个相同大写字母者,表示处理间差异不显著(P≥0.05,Tukey HSD法)

    Figure  3.   The soil microbial community diversity index analyses in each treatment group

    图  4   各处理组土壤微生物群落的磷脂脂肪酸含量变化

    “*”表示在0.01<P<0.05 水平差异显著;“**”表示在0.001<P<0.01 水平差异显著;“***”表示在0.000 1<P<0.001 水平差异显著;“****”表示在P<0.000 1 水平差异显著(Tukey HSD 法)

    Figure  4.   The changes of phospholipid fatty acid content in soil microbial community in each treatment group

    表  1   用于估算微生物数量的磷脂脂肪酸标记

    Table  1   The phospholipid fatty acid labeling used to evaluate the microbial quantity

    微生物类型 磷脂脂肪酸标记1) 文献
    革兰阳性菌 12:0 3OH,i13:0 OH,i14:0,i16:0 [16-18]
    革兰阴性菌 14:00,a14:0,15:00,16:00,17:0,18:00,16:1w7c,16:1w9,17:1w7,18:1w7c,19:0w8c,cy19:0 [19-21]
    真菌     18:1w9c,18:1w9t,20:1w9c [18, 22]
    放线菌    10Me17:0,10Me18:0 [16]
    原生生物   22:0,23:0,24:0 [17]
     1)“i”和“a”分别表示异式和反式支链脂肪酸;“w”表示自甲基端起双键的位置;“c”表示顺式脂肪酸;“cy”表示环状脂肪酸;“t”表示反式脂肪酸;“10Me”表示1个甲基团在距分子末端的第10个碳原子上
    下载: 导出CSV
  • [1]

    MOSCATELLI M C, LAGOMARSINO A, MARINARI S, et al. Soil microbial indices as bioindicators of environmental changes in a poplar plantation[J]. Ecol Indic, 2005, 5(3): 171-179. doi: 10.1016/j.ecolind.2005.03.002

    [2] 王曙光, 侯彦林. 磷脂脂肪酸方法在土壤微生物分析中的应用[J]. 微生物学通报, 2004, 31(1): 114-117. doi: 10.3969/j.issn.0253-2654.2004.01.026
    [3] 于树, 汪景宽, 李双异. 应用PLFA方法分析长期不同施肥处理对玉米地土壤微生物群落结构的影响[J]. 生态学报, 2008, 28(9): 4221-4227. doi: 10.3321/j.issn:1000-0933.2008.09.019
    [4] 刘国华, 叶正芳, 吴为中. 土壤微生物群落多样性解析法: 从培养到非培养[J]. 生态学报, 2012, 32(14): 4421-4433.
    [5]

    TETZNER N F, MANIERO M G, RODRIGUES-SILVA C, et al. On-line solid phase extraction-ultra high performance liquid chromatography-tandem mass spectrometry as a powerful technique for the determination of sulfonamide residues in soils[J]. J Chromatogr A, 2016, 1452: 89-97. doi: 10.1016/j.chroma.2016.05.034

    [6]

    ZHOU L J, YING G G, LIU S, et al. Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry[J]. J Chromatogr A, 2012, 1244: 123-138. doi: 10.1016/j.chroma.2012.04.076

    [7]

    FANG H, HAN Y L, YIN Y M, et al. Microbial response to repeated treatments of manure containing sulfadiazine and chlortetracycline in soil[J]. J Environ Sci Health B, 2014, 49(8): 609-615. doi: 10.1080/03601234.2014.911592

    [8] 徐晨光, 张奇春, 侯昌萍. 外源抗生素对茶园土壤微生物群落结构的影响[J]. 浙江大学学报(农业与生命科学版), 2014, 40(1): 75-84. doi: 10.3785/j.issn.1008-9209.2014.01.009
    [9] 张凯煜, 谷洁, 赵听, 等. 土霉素和磺胺二甲嘧啶对堆肥过程中酶活性及微生物群落功能多样性的影响[J]. 环境科学学报, 2015, 35(12): 3927-3936.
    [10]

    KIM K R, OWENS G, KWON S I, et al. Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment[J]. Water Air Soil Pollut, 2011, 214(1/2/3/4): 163-174.

    [11]

    WEI R, GE F, ZHANG L, et al. Occurrence of 13 veterinary drugs in animal manure-amended soils in Eastern China[J]. Chemosphere, 2016, 144: 2377-2383. doi: 10.1016/j.chemosphere.2015.10.126

    [12]

    JECHALKE S, HEUER H, SIEMENS J, et al. Fate and effects of veterinary antibiotics in soil[J]. Trends Microbiol, 2014, 22(9): 536-545. doi: 10.1016/j.tim.2014.05.005

    [13] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
    [14] 党雯, 郜春花, 张强, 等. Biolog法测定土壤微生物群落功能多样性预处理方法的筛选[J]. 中国农学通报, 2015, 31(2): 153-158.
    [15]

    CHOWDHURY T R, DICK R P. Standardizing methylation method during phospholipid fatty acid analysis to profile soil microbial communities[J]. J Microbiol Methods, 2012, 88(2): 285-291. doi: 10.1016/j.mimet.2011.12.008

    [16]

    GUTIÉRREZ I R, WATANABE N, HARTER T, et al. Effect of sulfonamide antibiotics on microbial diversity and activity in a Californian Mollic Haploxeralf[J]. J Soils Sediments, 2010, 10(3): 537-544. doi: 10.1007/s11368-009-0168-8

    [17]

    BÅÅTH E, ANDERSON T H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques[J]. Soil Biol Biochem, 2003, 35(7): 955-963. doi: 10.1016/S0038-0717(03)00154-8

    [18]

    ZOGG G P, ZAK D R, RINGELBERG D B, et al. Compositional and functional shifts in microbial communities due to soil warming[J]. Soil Sci Soc Am J, 1997, 61(2): 475-481. doi: 10.2136/sssaj1997.03615995006100020015x

    [19]

    BOSSIO D A, SCOW K M, GUNAPALA N, et al. Determinants of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles[J]. Microb Ecol, 1998, 36(1): 1-12. doi: 10.1007/s002489900087

    [20]

    OHTONEN R, FRITZE H, PENNANEN T, et al. Ecosystem properties and microbial community changes in primary succession on a glacier forefront[J]. Oecologia, 1999, 119(2): 239-246. doi: 10.1007/s004420050782

    [21]

    SMITHWICK E A H, TURNER M G, METZGER K L, et al. Variation in NH4+ mineralization and microbial communities with stand age in lodgepole pine (Pinus contorta) forests, Yellowstone National Park (USA)[J]. Soil Biol Biochem, 2005, 37(8): 1546-1559. doi: 10.1016/j.soilbio.2005.01.016

    [22]

    WU Y, MA B, ZHOU L, et al. Changes in the soil microbial community structure with latitude in eastern China, based on phospholipid fatty acid analysis[J]. Appl Soil Ecol, 2009, 43(2/3): 234-240.

    [23]

    GUTIÉRREZ I R, WATANABE N, HARTER T, et al. Effect of sulfonamide antibiotics on microbial diversity and activity in a Californian Mollic Haploxeralf[J]. J Soils Sediments, 2010, 10(3): 537-544. doi: 10.1007/s11368-009-0168-8

    [24]

    SALA M M, PINHASSI J, GASOL J M. Estimation of bacterial use of dissolved organic nitrogen compounds in aquatic ecosystems using Biolog plates[J]. Aquat Microb Ecol, 2006, 42(1): 1-5.

    [25] 唐小丽, 翟磊, 信春晖, 等. 利用Biolog技术分析芝麻香型白酒高温大曲微生物群落结构及多样性[J]. 酿酒科技, 2015(12): 7-11.
    [26]

    LIU F, WU J, YING G, et al. Changes in functional diversity of soil microbial community with addition of antibiotics sulfamethoxazole and chlortetracycline[J]. Appl Microbiol Biotechnol, 2012, 95(6): 1615-1623. doi: 10.1007/s00253-011-3831-0

    [27]

    FROSTEGÅRD A, BÅÅTH E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil[J]. Biol Fertil Soils, 1996, 22(1/2): 59-65.

    [28] 张焕军, 郁红艳, 丁维新. 长期施用有机无机肥对潮土微生物群落的影响[J]. 生态学报, 2011, 31(12): 3308-3314.
    [29]

    HAMMESFAHR U, HEUER H, MANZKE B, et al. Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils[J]. Soil Biol Biochem, 2008, 40(7): 1583-1591. doi: 10.1016/j.soilbio.2008.01.010

    [30] 裴雪霞, 周卫, 梁国庆, 等. 长期施肥对黄棕壤性水稻土生物学特性的影响[J]. 中国农业科学, 2010, 43(20): 4198-4206. doi: 10.3864/j.issn.0578-1752.2010.20.010
    [31] 郭芸, 孙本华, 王颖, 等. 长期施用不同肥料土PLFA指纹特征[J]. 中国农业科学, 2017, 50(1): 94-103.
图(4)  /  表(1)
计量
  • 文章访问数:  1471
  • HTML全文浏览量:  2
  • PDF下载量:  1266
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-02
  • 网络出版日期:  2023-05-18
  • 刊出日期:  2018-11-09

目录

    /

    返回文章
    返回