Velocity control strategy based on a cloud model for unmanned agricultural vehicle during obstacle crossing
-
摘要:目的
提高遥控操作农业车辆的智能性与安全性。
方法提出一种新的无人农业车辆遇障后的速度控制方法。建立动态环境中无人车辆的碰撞预测模型,确定实时碰撞位置,依据专家经验与农业作业环境制定的云推理规则,建立速度控制策略,实现速度控制。
结果算法预测判断平均耗时0.170 1 s,无人车辆速度控制过程没有受到无威胁障碍物影响,且符合速度云推理规则。
结论该算法能够实现实时碰撞预测,具备抗干扰能力,满足实时性要求。
Abstract:ObjectiveTo improve the intelligence and safety of remote-operated agricultural vehicles.
MethodA new method for unmanned agricultural vehicles during obstacle crossing was proposed. The collision prediction model of unmanned vehicles in dynamic environment was established, and the real-time collision location was determined. According to the cloud inference principle based on both experience of experts and agricultural operation environment, velocity control strategy was established to realize velocity control.
ResultThe algorithm took 0.170 1 s on average to make a prediction, the velocity control results of unmanned vehicles excluded the impact of non-threatening obstacles and accorded with the velocity cloud inference principle.
ConclusionThe established algorithm is able to realize real-time collision prediction, possesses anti-disturbance ability, and satisfies real-time requirement.
-
-
表 1 速度推理规则
Table 1 Velocity inference principle
危险等级(j) 距离等级(i) 近(1) 较近(2) 一般(3) 较远(4) 远(5) 低(1) 速度较慢 速度一般 速度一般 速度较快 速度快 较低(2) 速度较慢 速度较慢 速度一般 速度较快 速度快 一般(3) 速度零 速度较慢 速度一般 速度较快 速度较快 较高(4) 速度零 速度较慢 速度较慢 速度一般 速度较快 高(5) 速度零 速度零 速度较慢 速度一般 速度较快 -
[1] 林佩. 无人驾驶拖拉机研制成功[N]. 中国知识产权报, 2010-01-06. [2] HSU W Y. Brain-computer interface: The next frontier of telemedicine in human-computer interaction[J]. Telemat Inform, 2015, 32(1): 180-192.
[3] ZHONG H, WACHS J P, NOF S Y. Telerobot-enabled HUB-CI model for collaborative lifecycle management of design and prototyping[J]. Comput Ind, 2014, 65(4): 550-562.
[4] 周海龙. 轮式机器人云模型避障控制系统设计与实现[D]. 镇江: 江苏科技大学, 2011. [5] 徐玉华, 张崇巍, 徐海琴. 基于激光测距仪的移动机器人避障新方法[J]. 机器人, 2010, 32(2): 179-183. [6] 魏连锁, 戴学丰. 基于云模型的粒子群优化算法在路径规划中的应用[J]. 计算机工程与应用, 2012, 48(17): 229-232. [7] XIN Y, LIANG H, MEI T, et al. A new occupancy grid of the dynamic environment for autonomous vehicles[C]//IEEE. IEEE intelligent vehicles symposium proceedings. Dearborn: IEEE, 2014: 787-792.
[8] 叶琼, 李绍稳, 张友华, 等. 云模型及应用综述[J]. 计算机工程与设计, 2011, 32(12): 4198-4201. [9] 杜湘瑜, 尹全军, 黄柯棣, 等. 基于云模型的定性定量转换方法及其应用[J]. 系统工程与电子术, 2008, 30(4): 772-776. [10] 刘常昱, 冯芒, 戴晓军, 等. 基于云X信息的逆向云新算法[J]. 系统仿真学报, 2004, 16(11): 2417-2420. [11] LI D, LIU C, GAN W. A new cognitive model: Cloud model[J]. Int J Intell Syst, 2009, 24(3): 357-375.
[12] SUN X, CAI C, SHEN X. A new cloud model based human-machine cooperative path planning method[J]. J Intell Robot Syst, 2015, 79(1): 3-19.
[13] BALL D, UPCROFT B, WYETH G, et al. Vision-based obstacle detection and navigation for an agricultural robot[J]. J Field Robot, 2016, 33(8): 1107-1130.
[14] ELBANHAWI M, SIMIC M. Randomised kinodynamic motion planning for an autonomous vehicle in semi-structured agricultural areas[J]. Biosyst Eng, 2014, 126: 30-44.
[15] KONOLIGE K. Improved occupancy grids for map building[J]. Auton Robots, 1997, 4(4): 351-367.