Research on transmission measurement system for LoRa wireless underground sensor network
-
摘要:目的
以智能手机为核心,研制成本低、使用简单的面向LoRa地下无线数据传输的测试系统。
方法该测试系统由安装了测试用的App智能手机和与之匹配的地下测试节点组成。利用该系统进行场景测试,测定影响土壤中LoRa无线数据传输效果的因素并讨论对应的数据传输方法。
结果测试结果表明,该系统运行可靠、使用方便灵活,LoRa低功耗广域网技术亦可以较为可靠地满足土壤介质中的无线传感器网络数据传输需求。
结论本系统可为未来地下LoRa无线传感器网络的工程应用提供相应的测试手段。
Abstract:ObjectiveTo develop a low-cost and simple operational system based on a smartphone for measuring the transmission of LoRa wireless undergroud data.
MethodThe measurement system consisted of a smartphone with test App installed and its matching underground test nodes. Scene measurements were carried out with this system. The factors affecting the LoRa wireless data transmission in soil were determined, and the corresponding data transmission methods were discussed.
ResultThe test results showed that the system was reliable and easy to operate, and LoRa low-power wide-area network technology could meet the data transmission requirements of wireless underground sensor networks in soil.
ConclusionThe system is expected to provide the appropriate testing method for the engineering application of LoRa wireless underground sensor networks in the future.
-
Keywords:
- wireless sensor /
- LoRa /
- smartphone /
- wireless data transmission /
- low-power consumption /
- wide-area network
-
-
-
[1] YU X, WU P, HAN W, et al. A survey on wireless sensor network infrastructure for agriculture[J]. Comput Stand Inter, 2013, 35(1): 59-64.
[2] 许培培, 万雪芬, 杨义, 等. 用于观光农业的混合型无线传感器网络节点设计[J]. 华南农业大学学报, 2017, 38(2): 118-124. [3] VIJAYALAKSHMI S R, MURUGANAND S. Different soft computing algorithms used in fire sensor node of wireless sensor network integrated with IoT[J]. Int J Embedded Syst, 2017, 9(4): 310-320.
[4] ZHANG Z, WU P, HAN W, et al. An advanced wireless sensor networks for soil property monitoring[J]. J Inf Comput Sci, 2012, 9(14): 4141-4147.
[5] TIUSANEN M J. Soil scouts: Description and performance of single hop wireless underground sensor nodes[J]. Ad Hoc Netw, 2013, 11(5): 1610-1618.
[6] AKYILDIZ I F, STUNTEBECK E P. Wireless underground sensor networks: Research challenges[J]. Ad Hoc Netw, 2006, 4(6): 669-686.
[7] LI L, DONG N, CHEN J. EM wave propagation in non-uniform soil[J]. Inf Technol J, 2013, 12(19): 5011-5016.
[8] 郁晓庆, 韩文霆, 吴普特, 等. 土壤不同频率无线地下传感器网络信号传播特性试验[J]. 农业机械学报, 2015, 46(4): 252-260. [9] ALOŸS A, YI J, THOMAS C, et al. A study of LoRa: Long range & low power networks for the Internet of things[J]. Sensors, 2016, 16(9): 1466.
[10] SCHMIDT N. LoRa: A radio approach towards IoT geo localization[J]. Microwave J, 2016, 11: 28-32.
[11] SILVA A R, VURAN M C. Communication with aboveground devices in wireless underground sensor networks: An empirical study[C]// IEEE International Conference on Communications. Cape Town, South Africa: IEEE. 2010: 1-6.
[12] PETAJAJARVI J, MiKHAYLOV K, PETTISSALO M, et al. Performance of a low-power wide-area network based on LoRa technology: Doppler robustness, scalability, and coverage[J]. Int J Distrib Sens Netw, 2017, 13(3): 1-16.
[13] TJELTA T, BACON D. Predicting combined rain and wet snow attenuation on terrestrial links[J]. IEEE Trans Antennas Propag, 2010, 58(5): 1677-1682.
[14] NDZI D L, HARUN A, RAMLI F M, et al. Wireless sensor network coverage measurement and planning in mixed crop farming[J]. Comput Electron Agric, 2014, 105: 83-94.
[15] SILVA B, FISHER R M, KUMAR A, et al. Experimental link quality characterization of wireless sensor networks for underground monitoring[J]. IEEE Trans Ind Inf, 2015, 11(5): 1099-1110.
[16] ZEMMOUR H, BAUDOIN G, DIET A. Soil effects on the underground to aboveground communication link in ultra wideband wireless underground sensor networks [J]. IEEE Antennas Wirel Propag Lett, 2016, 16: 218-222. doi: 10.1109/LAWP.2016.2570298
[17] SUSHA L S U, SINGH D N, BAGHINI M S. A critical review of soil moisture measurement[J]. Measurement, 2014, 54(8): 92-105.
[18] SHI G, NAN G, KOU J, et al. Comprehensive review of sleep/wake scheduling in wireless sensor networks[C]//High performance networking, computing, and communication systems. 2011 Second International Conference. Berlin, Heidelberg: Springer, 2011, 16: 492-499.
[19] SIDDIQUI S, GHANI S. Towards dynamic polling: Survey and analysis of channel polling mechanisms for wireless sensor networks[C]//Intelligent Systems Engineering (ICISE), 2016 International Conference on. Islamabad, Pakistan: IEEE, 2016: 356-363.
-
期刊类型引用(23)
1. 池美香,陈韶萍,黄婷,陈世雄,梁勇,邱荣洲. 柑橘黄龙病田间症状识别图像数据集. 中国科学数据(中英文网络版). 2025(01): 52-61 . 百度学术
2. 骆润玫,殷惠莉,刘伟康,胡凯,廖飞,刘泽乾,曹亚芃,李强,王卫星. 基于YOLOv5-C的广佛手病虫害识别. 华南农业大学学报. 2023(01): 151-160 . 本站查看
3. 殷献博,邓小玲,兰玉彬,陈欣. 基于改进YOLOX-Nano算法的柑橘梢期长势智能识别. 华南农业大学学报. 2023(01): 142-150 . 本站查看
4. 梁生珺,于明鑫. 应用于无人机平台的轻量Transformer排水口检测框架. 电子技术与软件工程. 2023(01): 165-168 . 百度学术
5. 汪莹,刘静远,吕文刚,龙海,刘宵宵,余道坚,方毅,郑铭森,张浩,陈冬美,高瑞芳. 基于卷积神经网络的昆虫和杂草标本智能全维识别方法初探. 植物检疫. 2023(02): 40-45 . 百度学术
6. 王慧,李康顺,蔡铁,王文祥,董纯铿. 基于约束性多目标优化算法的柑橘黄龙病识别算法. 江苏农业科学. 2023(06): 159-167 . 百度学术
7. 马军磊,栗伟周,张赞. 基于PP-YOLO的电子焊接实训装置安全报警系统. 许昌学院学报. 2023(02): 116-121 . 百度学术
8. 李志臣,凌秀军,李鸿秋,李志军. 基于改进ShuffleNet的板栗分级方法. 山东农业大学学报(自然科学版). 2023(02): 299-307 . 百度学术
9. 杨雪. 基于DCGAN的数据增强方法. 江苏通信. 2023(02): 97-100+107 . 百度学术
10. 边坤,梁慧. 基于机器学习的图案分类研究进展. 图学学报. 2023(03): 415-426 . 百度学术
11. 胡凯,骆润玫,刘泽乾,曹亚芃,廖飞,王卫星,李强,孙道宗. 基于改进SSD的广佛手病虫害检测方法. 南京农业大学学报. 2023(04): 813-821 . 百度学术
12. 王治兵,吴丽丽. 基于改进的MobilenetV3苹果叶片病害图像识别技术. 软件工程. 2023(08): 20-25 . 百度学术
13. 刘拥民,胡魁,聂佳伟,谢铁强. 基于MSDB-ResNet的水稻病虫害识别. 华南农业大学学报. 2023(06): 978-985 . 本站查看
14. 赵法川,徐晓辉,宋涛,郝淼淼,汪曙,朱伟龙. 融合多头注意力的轻量级作物病虫害识别. 华南农业大学学报. 2023(06): 986-994 . 本站查看
15. 李志臣,凌秀军,李鸿秋,李志军. 基于改进EfficientNet的板栗分级方法. 中国农机化学报. 2023(12): 180-185 . 百度学术
16. 徐兢成,王丽华. 基于AlexNet网络的交通标志识别方法. 无线电工程. 2022(03): 470-475 . 百度学术
17. 周巧黎,马丽,曹丽英,于合龙. 基于改进轻量级卷积神经网络MobileNetV3的番茄叶片病害识别. 智慧农业(中英文). 2022(01): 47-56 . 百度学术
18. 胡哲,徐承志,雷光波,徐丽. 基于改进YOLOv5的X射线图像铸件缺陷实时检测. 激光杂志. 2022(05): 54-59 . 百度学术
19. 叶名炀,张杰强. 基于轻量化网络MobileNetV2的玉米病害识别研究. 现代计算机. 2022(11): 46-50 . 百度学术
20. 钟友闻,车文刚,高盛祥. 轻型多尺度黑色素瘤目标检测网络模型的建立:基于注意力机制调控. 南方医科大学学报. 2022(11): 1662-1671 . 百度学术
21. 滕明洪,谭立新. 基于EfficientNetV2和迁移学习的葡萄病害识别研究. 软件. 2022(11): 43-49 . 百度学术
22. 陆健强,梁效,余超然,兰玉彬,邱洪斌,黄捷伟,尹梓濠,陈慧洁,郑胜杰. 基于坐标注意力机制与高效边界框回归损失的线虫快速识别. 农业工程学报. 2022(22): 123-132 . 百度学术
23. 卢慧林,陈大嵩,陈逢浩,叶静文,欧阳革成. 基于纳米孔测序技术的柑橘黄龙病检测方法建立. 环境昆虫学报. 2021(06): 1596-1600 . 百度学术
其他类型引用(14)