陈意超, 李伏生, 李烙布. 不同灌溉方式和尿素猪粪比例对稻田氮素转化相关微生物活性的影响[J]. 华南农业大学学报, 2018, 39(1): 31-39. DOI: 10.7671/j.issn.1001-411X.2018.01.006
    引用本文: 陈意超, 李伏生, 李烙布. 不同灌溉方式和尿素猪粪比例对稻田氮素转化相关微生物活性的影响[J]. 华南农业大学学报, 2018, 39(1): 31-39. DOI: 10.7671/j.issn.1001-411X.2018.01.006
    CHEN Yichao, LI Fusheng, LI Luobu. Effects of different irrigation methods and ratios of urea pig manure on microbial activity related to nitrogen transformation in paddy soil[J]. Journal of South China Agricultural University, 2018, 39(1): 31-39. DOI: 10.7671/j.issn.1001-411X.2018.01.006
    Citation: CHEN Yichao, LI Fusheng, LI Luobu. Effects of different irrigation methods and ratios of urea pig manure on microbial activity related to nitrogen transformation in paddy soil[J]. Journal of South China Agricultural University, 2018, 39(1): 31-39. DOI: 10.7671/j.issn.1001-411X.2018.01.006

    不同灌溉方式和尿素猪粪比例对稻田氮素转化相关微生物活性的影响

    Effects of different irrigation methods and ratios of urea pig manure on microbial activity related to nitrogen transformation in paddy soil

    • 摘要:
      目的  弄清“薄浅湿晒”和干湿交替灌溉方式下稻田氮素转化相关微生物活性的变化规律。
      方法  试验设3种灌溉方式(CIR: 常规灌溉;TIR: “薄浅湿晒”灌溉;DIR: 干湿交替灌溉)和3种施氮处理(FM1: 全尿素;FM2: 猪粪替代30%尿素;FM3: 猪粪替代50%尿素),测定了分蘖期、孕穗期、乳熟期和成熟期土壤亚硝酸细菌、硝酸细菌和反硝化细菌数量以及脲酶、羟胺还原酶、亚硝酸还原酶和硝酸还原酶的活性,并分析了各微生物活性指标之间的相互关系。
      结果  孕穗期不同处理土壤亚硝酸细菌、硝酸细菌和反硝化细菌数量较多,脲酶、亚硝酸还原酶和硝酸还原酶活性较高,且DIR方式下土壤羟胺还原酶活性较高。FM3处理下,与CIR方式相比,DIR方式下的土壤亚硝酸细菌数量在分蘖期提高2.31倍,分蘖期至乳熟期的平均土壤硝酸细菌数量及脲酶、羟胺还原酶、亚硝酸还原酶活性分别增加2.07、0.81、554.72和1.78倍,但是4个时期的平均反硝化细菌数量以及硝酸还原酶活性分别下降31.34%和43.82%。TIR方式下的土壤氮素转化相关微生物指标与CIR方式的差异因施肥处理和生育期而异。DIR方式下,与FM1相比,FM3处理显著增加乳熟期土壤亚硝酸细菌数量、孕穗期和成熟期硝酸细菌数量、分蘖期和成熟期反硝化细菌数量、乳熟期和成熟期土壤脲酶活性、分蘖期和乳熟期土壤羟胺还原酶活性以及孕穗期土壤亚硝酸还原酶和硝酸还原酶活性。除硝酸还原酶活性与硝酸细菌数量、亚硝酸还原酶活性之间的相关关系不显著外,其他指标之间呈显著相关。
      结论  水稻孕穗期是稻田土壤氮素转化相关微生物的活跃时期,DIR方式能有效提高分蘖期和孕穗期大部分土壤氮素转化相关微生物指标,而TIR方式和FM3处理在乳熟期或成熟期可显著增加土壤氮素转化相关微生物活性。

       

      Abstract:
      Objective  To understand the changes of microbial indexes related to nitrogen transformation in paddy field under “thin-shallow-wet-dry” and alternate drying and wetting irrigation methods.
      Method  We used three irrigation methods (CIR: conventional irrigation, TIR: “thin-shallow-wet-dry” irrigation, DIR: alternate drying and wetting irrigation), and three nitrogen (N) treatments (FM1: all urea, FM2: 30% urea substituted by pig manure, FM3: 50% urea substituted by pig manure). The numbers of nitrite bacteria, nitrate bacteria, denitrifying bacteria and the activities of urease, hydroxylamine reductase, nitrite reductase and nitrate reductase were measured at tillering, booting, milky and ripening stages. The relationships among the microbial activity indices were analyzed.
      Result  At booting stage, the numbers of nitrite bacteria, nitrate bacteria and denitrifying bacteria were relatively large, and the activities of urease, nitrite reductase and nitrate reductase were relatively high in soil under different treatments. Hydroxylamine reductase activity was relatively high by DIR method. Under FM3 treatment, compared to CIR method, DIR method increased the number of nitrite bacteria by 2.31 times at tillering stage, increased the number of nitrate bacteria and the activities of urease, hydroxylamine reductase and nitrite reductase by 2.07, 0.81, 554.72 and 1.78 times from tillering stage to milky stage, but reduced the average number of denitrifying bacteria and nitrate reductase activity by 31.34% and 43.82% respectively at four growth stages. The differences of microbial indexes related to nitrogen transformation in paddy soil between TIR and CIR methods varied with N treatments and growth stages. Using DIR method, compared to FM1, FM3 significantly increased the number of nitrite bacteria at milky stage, the number of nitrate bacteria at booting and ripening stages, the number of denitrifying bacteria at tillering and ripening stages, urease activity at milky and ripening stages, hydroxylamine reductase activity from tillering stage to milky stage, and activities of nitrite reductase and nitrate reductase at booting stage. Except the insignificant correlations among nitrate reductase activity, the number of nitrate bacteria and nitrite reductase activity, there were significant correlations among other microbial indexes.
      Conclusion  The rice booting stage is the active stage of microbial activity related to nitrogen transformation in paddy field. DIR method can effectively enhance most microbial indexes related to nitrogen transformation in soil at tillering and booting stages. TIR method and FM3 treatment can significantly increase microbial activities related to nitrogen transformation in soil at milky and ripening stages.

       

    /

    返回文章
    返回