Detection of nine herbicide residues in Angelica sinensis by QuEChERS-GC-MS
-
摘要:目的
建立当归中除草剂的残留分析方法。
方法阿特拉津、异恶草酮、乙草胺、扑草净、异丙甲草胺、二甲戊灵、丁草胺、丙草胺和乙氧氟草醚9种除草剂残留分析采用QuEChERS方法结合气相色谱-质谱联用仪。样品用乙腈提取,采用N–丙基乙二胺(PSA)和石墨化炭黑(GCB)净化,选择离子监测模式(SIM)进行检测,外标法定量。对影响提取和净化的参数进行优化。
结果在0.01~5.00 mg·L–1的范围内,各除草剂的峰面积与质量浓度呈良好的线性关系。在添加量分别为0.01和0.10 mg·kg–1的水平下,9种除草剂在当归样品中的平均回收率为74.58%~96.37%,相对标准偏差均低于11.73%,各除草剂的检出限范围为0.52~6.60 μg·kg–1。
结论该方法简单、快速、有效,能够用于实际当归样品中多种除草剂的残留检测。
Abstract:ObjectiveTo establish a method for analyzing herbicide residues in Angelica sinensis.
MethodThe residues of nine herbicides, including fenamine, clomazone, acetochlor, prometryn, metolachlor, pendimethalin, butachlor, pretilachlor and oxyfluorfen were analyzed by QuEChERS combined with GC-MS. Samples were extracted with acetonitrile and cleaned up using primary secondary amine (PSA) and graphitized carbon black (GCB). Nine herbicides were detected using the selective ion monitoring (SIM) mode and quantified with external standards. Parameters which influenced extraction and purification efficiency were optimized.
ResultThere were good linear relationships between herbicide concentration and detected peak area within the range from 0.01 to 5.00 mg·L-1 for all nine herbicides. The average recovery rates of nine herbicides in A. sinensis were from 74.58% to 96.37% at the addition levels of 0.01 and 0.10 mg·kg-1, with relative standard deviation less than 11.73%. The detection limits of nine herbicides were from 0.52 to 6.60 μg·kg-1.
ConclusionThis detection method is simple, fast and effective, and can be used practically to detect a variety of herbicides in A. sinensis samples.
-
Keywords:
- QuEChERS /
- herbicide /
- Angelica sinensis /
- GC-MS /
- pesticide residue
-
-
表 1 9种除草剂的保留时间和特征离子
Table 1 Retention time and characteristic ions of nine herbicides
目标组分 t保留/min t开始/min 特征离子(m/z) 阿特拉津 6.356 3.000 200.0,204.0 异恶草酮 6.482 3.000 200.0,204.0 乙草胺 7.634 7.000 223.0 扑草净 7.981 7.800 184.0, 241.0 异丙甲草胺 8.687 8.300 162.0, 238.0 二甲戊灵 9.526 9.000 252.0 丁草胺 10.570 9.750 176.0 丙草胺 11.155 9.750 176.0 乙氧氟草醚 11.467 11.300 252.0 表 2 方法的检出限、相关系数、线性范围
Table 2 Limit of detection, correlation coefficient and linear range of this method
除草剂 线性范围/(mg·L-1) 线性方程1) 相关系数(r) 检出限/(μg·kg-1) 阿特拉津 0.01~5.00 y=206 977x–9 799 0.999 3 0.52 异恶草酮 0.01~5.00 y=280 281x–17 483 0.998 9 0.57 乙草胺 0.01~5.00 y=70 024x–5 493 0.999 1 2.90 扑草净 0.01~5.00 y=237 126x–10 159 0.999 5 0.75 异丙甲草胺 0.01~5.00 y=513 152x–37 270 0.998 5 0.54 二甲戊灵 0.01~5.00 y=282 124x–44 980 0.998 6 0.96 丁草胺 0.01~5.00 y=180 091x–19 806 0.998 2 1.40 丙草胺 0.01~5.00 y=164 374x–20 539 0.998 7 1.90 乙氧氟草醚 0.01~5.00 y=70 968x–15 898 0.998 8 6.60 1) x 表示除草剂质量浓度,y 表示峰面积。 表 3 9 种除草剂在当归样品中的回收率和相对标准偏差
Table 3 Recovery rates and relative standard deviations of nine herbicides in Angelica sinensis %
除草剂 添加0.01 mg·kg-1 添加0.10 mg·kg-1 回收率 相对标准偏差 回收率 相对标准偏差 阿特拉津 82.04 9.74 95.70 6.30 异恶草酮 83.27 11.73 96.27 6.06 乙草胺 85.66 6.77 85.20 8.29 扑草净 74.58 8.38 85.65 5.92 异丙甲草胺 81.38 8.63 88.28 8.74 二甲戊灵 86.89 7.94 87.60 7.33 丁草胺 81.82 4.64 96.37 6.69 丙草胺 77.71 8.24 89.30 6.72 乙氧氟草醚 79.36 7.63 92.09 5.42 -
[1] 宋秋月, 付迎波, 刘江, 等. 当归的化学成分研究[J]. 中草药, 2011, 42(10): 1900-1904. [2] 马瑞君, 王钦, 陈学林, 等. 当归的研究进展[J]. 中草药, 2002, 33(3): 280-282. [3] 李耿, 杨洪军, 边宝林. 中药农药残留的研究现状述评[J]. 中国实验方剂学杂志, 2005, 11(4): 71. [4] 薛健, 金红宇, 田金改, 等. 中药农药残留问题研究与思考[J]. 中草药, 2007, 38(10): 1578. [5] 丁平, 田友清. 近30年中药农药残留研究状况与探讨[J]. 安徽医药, 2009, 13(7): 815. [6] 张庆生, 石上, 张树杰. 中、日、韩有关中药农药残留与重金属控制概况[J]. 中医药学报, 2005, 33(6): 1. [7] 苗青, 孔维军, 魏建和, 等. 中药材中农药残留现状及控制措施评析[J]. 农药学学报, 2012, 14(4): 363-370. [8] ANASTASSIADES M, LEHOTAY S J, POCURULL E, et al. Fast and easy multi-residue method employing acetonitrile extraction/partitioning and dispersive solid-phase extraction for the determination of pesticide residues in produce[J]. J AOAC Int, 2003, 86(2): 412-431.
[9] LEHOTAY S J, TULLY T, GARCA A V, et al. Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: Collaborative study[J]. J AOAC Int, 2007, 90(2): 485-520.
[10] PAYA P, ANASTASSIADES M, MACK D, et al. Analysis of pesticide residues using the quick easy cheap effective rugged and safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection[J]. Anal Bioanal Chem, 2007, 389(6): 1697-1714.
[11] 李曦, 张丽宏, 王晓晓, 等. 当归化学成分及药理作用研究进展[J]. 中药材, 2013, 36(6): 1023-1027. [12] SCHENCK F J, LEHOTAY S J. Does further clean-up reduce the matrix enhancement effect in gas chromatographic analysis of pesticide residues in food?[J]. J Chromatogr A, 2000, 868(1): 51-61.
[13] ERNEY D R, PAWLOWSKI T M, POOLE C F. Matrix-induced peak enhancement of pesticides in gas chromatography: Is there a solution?[J]. HRC-J High Res Chrom, 1997, 20(7): 375-384.
[14] RAJSKI L, LOZANO A, UCLES A, et al. Determination of pesticide residues in high oil vegetal commodities by using various multi-residue methods and clean-ups followed by liquid chromatography tandem mass spectrometry[J]. J Chromatogr A, 2013, 1304: 109-120.
[15] MELO A, CUNHA S C, MANSILHA C, et al. Monitoring pesticides residues in greenhouse tomato by combining acetonitrile-based extraction with dispersive liquidliqiud microextraction followed by gas-chromatography-mass spectrometry[J]. Food Chem, 2012, 135(3): 1071-1077.