Effects of spraying parameters of small plant protection UAV on droplets deposition distribution in citrus canopy
-
摘要:目的
探索小型植保无人机对果树喷施作业的雾滴沉积分布效果及应用前景,研究小型植保无人机喷雾参数对橘树冠层雾滴沉积分布的影响。
方法采用三因素(飞行高度、飞行速度、喷施流量)的正交试验,应用小型六旋翼植保无人机进行喷雾试验。
结果根据雾滴沉积密度和雾滴沉积均匀性结果,较佳的作业参数是喷头流量1.0 L·min–1、作业高度2.5 m、作业速度4 m·s–1,影响雾滴沉积密度的主次顺序依次为作业速度、作业高度、喷头流量;根据雾滴沉积穿透性结果,作业高度均为2.0 m的试验号2(作业速度4 m·s–1,喷头流量0.6 L·min–1)和试验号8(作业速度1 m·s–1,喷头流量1.0 L·min–1)中雾滴沉积穿透性分别为22.21%和22.41%,其雾滴覆盖密度大且穿透性较好;影响雾滴沉积穿透性的因素主次顺序为作业高度、作业速度、喷头流量。
结论针对植保无人机旋翼风场的影响和橘树独特的树形结构,对植保无人机的作业参数进行了优选,以保证航空喷施作业雾滴在橘树冠层的有效沉积分布。本试验研究可为小型无人机对果树的合理喷施、提高喷施效率提供参考和指导。
Abstract:ObjectiveTo explore droplet deposition distribution patterns from aerial spraying and the application prospect of small plant protection unmanned aerial vehicle (UAV) for fruit trees, and study the influence of spraying parameters of UAV on droplets deposition distribution in citrus canopy.
MethodSpray test with six-rotor plant protection UAV was arranged by an orthogonal test of three factors (flight height, flight velocity, nozzle flow rate).
ResultPreferred spraying operation parameters for small plant protection UAV were 2.5 m flight height, 4.0 m·s–1 flight speed and 1.0 L·min–1 nozzle flow rate based on the test results of density and uniformity of deposited droplets. The factors that affected the density of deposited droplets were in order of flight velocity, flight height, and nozzle flow rate. Test No.2 with 2.0 flight height, 4 m·s–1 flight speed, 0.6 L·min–1 nozzle flow rate and No.8 with 2.0 m flight height, 1 m·s–1 flight speed, 1.0 L·min–1 nozzle flow rate resulted in relatively high density and penetrability of deposited droplets, and the penetrability of droplets were 22.21% and 22.41% respectively. The factors that affected the penetrability of deposited droplets were in order of flight height, flight velocity, and nozzle flow rate.
ConclusionDue to the influence of the wind field of UAV rotor and the unique structure of citrus, the operating parameters of plant protection UAV should be optimized to ensure effective deposition and distrubition of droplets in citrus canopy from aerial spraying. This research can provide reference and guidance for reasonable spraying using small UAV on fruit trees, for improving the spraying efficiency.
-
Keywords:
- plant protection UAV /
- citrus /
- aerial spraying /
- droplet deposition /
- spraying parameter /
- orthogonal test
-
-
表 2 试验因素与水平
Table 2 Test factors and levels
水平 因素 喷头流量(A)/
(L·min–1)作业高度(B)/
m作业速度(C)/
(m·s–1)1 0.6 1.5 2 2 1.0 2.0 4 3 1.0 2.5 6 表 3 正交试验方案
Table 3 Orthogonal design
试验组号 因素A 因素B 因素C 1 1 1 1 2 1 2 2 3 1 3 3 4 2 1 2 5 2 2 3 6 2 3 1 7 3 1 3 8 3 2 1 9 3 3 2 表 4 雾滴沉积分布试验结果
Table 4 Test results of droplet deposition distrubition
试验组号 因素 A 因素 B 因素 C 雾滴沉积密度/(个·cm–2) 均匀性/% 穿透性/% 上层 中层 下层 上层 中层 下层 1 1 1 1 60.44 66.97 69.61 83.12 100.90 72.56 5.87 2 1 2 2 124.31 72.64 91.46 62.00 62.22 54.75 22.21 3 1 3 3 161.69 97.24 60.04 69.12 64.59 44.73 39.50 4 2 1 2 162.24 92.46 75.04 52.66 76.06 70.95 25.33 5 2 2 3 125.35 57.43 47.66 45.78 67.16 69.45 44.98 6 2 3 1 85.76 43.83 47.33 64.20 70.69 36.04 32.22 7 3 1 3 77.55 76.54 52.81 36.74 85.15 81.27 16.57 8 3 2 1 108.23 91.63 154.15 60.65 94.33 65.82 22.41 9 3 3 2 196.11 114.76 73.60 45.58 68.65 51.13 39.72 表 5 雾滴沉积密度极差分析
Table 5 Range analysis of droplet deposition density
指标1) 因素A 因素B 因素C 上层 中层 下层 上层 中层 下层 上层 中层 下层 $ K_1 $ 346.44 236.85 221.11 300.23 235.97 297.46 254.43 202.43 271.09 $ K_2 $ 373.35 193.72 270.03 357.89 221.70 293.27 482.66 279.86 340.10 $ K_3 $ 381.89 282.93 280.56 443.56 255.83 180.97 364.59 231.21 160.51 $\overline {K}_1$ 115.48 78.95 73.70 100.08 78.66 99.15 84.81 67.48 90.36 $\overline {K}_2$ 124.45 64.57 90.01 119.30 73.90 97.76 160.89 93.29 113.37 $\overline {K}_3$ 127.30 94.31 93.52 147.85 85.28 60.33 121.53 77.07 53.50 极差 11.82 29.74 19.82 47.77 11.38 38.82 76.08 25.81 59.87 较优水平 A3 A3 A3 B3 B3 B2 C2 C2 C2 1) Ki 表示 i 水平时各因素所对应的试验结果之和。 表 6 雾滴沉积均匀性极差分析
Table 6 Range analysis of droplet deposition uniformity
指标1) 因素 A 因素 B 因素 C 上层 中层 下层 上层 中层 下层 上层 中层 下层 $ K_1 $ 214.24 227.71 172.04 172.52 262.11 224.78 207.97 265.92 174.42 $ K_2 $ 162.64 213.91 176.44 168.43 223.71 190.02 160.24 206.93 176.83 $ K_3 $ 142.97 248.13 198.22 178.90 203.93 131.90 151.64 216.90 195.45 $\overline {K}_1$ 71.41 75.90 57.35 57.51 87.37 74.93 69.32 88.64 58.14 $\overline {K}_2$ 54.21 71.30 58.81 56.14 74.57 63.34 53.41 68.98 58.94 $\overline {K}_3$ 47.66 82.71 66.07 59.63 67.98 43.97 50.55 72.30 65.15 极差 23.75 11.41 8.72 3.49 19.39 30.96 18.77 19.66 7.01 较优水平 A3 A2 A2 B2 B3 B3 C3 C2 C1 1) Ki 表示 i 水平时各因素所对应的试验结果之和。 表 7 雾滴沉积穿透性极差分析
Table 7 Range analysis of droplet deposition penetrability
指标1) 因素A 因素B 因素C $ K_1 $ 67.58 47.77 60.50 $ K_2 $ 102.53 89.60 87.26 $ K_3 $ 78.70 111.44 101.05 $\overline {K}_1$ 22.53 15.92 20.17 $\overline {K}_2$ 34.18 29.87 29.09 $\overline {K}_3$ 26.23 37.15 33.68 极差 11.65 21.23 13.51 1) Ki 表示 i 水平时各因素所对应的试验结果之和。 -
[1] 梅慧兰, 邓小玲, 洪添胜, 等. 柑橘黄龙病高光谱早期鉴别及病情分级[J]. 农业工程学报, 2014, 30(9): 140-147. [2] 张盼, 吕强, 易时来, 等. 小型无人机对柑橘园的喷雾效果研究[J]. 果树学报, 2016, 33(1): 34-42. [3] BASSANEZI R B, MONTESINO L H, STUCHI E S. Effects of huanglongbing on fruit quality of sweet orange cultivars in Brazil[J]. Eur J Plant Pathol, 2009, 125(4): 565-572.
[4] DENG X L, GAO Y D, CHEN J C, et al. Current situation of “Candidatus Liberibacter asiaticus” in Guangdong China, where citrus Huanglongbing was first described[J]. J Integr Agr, 2012, 11(3): 424-429.
[5] 周志艳, 袁旺, 陈盛德. 中国水稻植保机械现状与发展趋势[J]. 广东农业科学, 2014, 41(15): 178-183. [6] 杨学军, 严荷荣, 徐赛章, 等. 植保机械的研究现状及发展趋势[J]. 农业机械学报, 2002, 33(6): 129-131. [7] 李鸿筠, 刘浩强, 冉春, 等. 不同喷雾器械对柑橘害虫的防治研究[J]. 农机化研究, 2015, 4: 150-154. [8] 傅锡敏, 吕晓兰, 丁为民, 等. 我国果园植保机械现状与技术需求[J]. 中国农机化, 2009(6): 10-13. [9] 宋坚利, 何雄奎, 曾爱军, 等. 三种果园施药机械施药效果研究[J]. 中国农机化, 2006(5): 79-82. [10] 张东彦, 兰玉彬, 陈立平, 等. 中国农业航空施药技术研究进展与展望[J]. 农业机械学报, 2014, 45(10): 53-59. [11] LAN Y B, HOFFMANN W C, FRITZ B K, et al. Spray drift mitigation with spray mix adjuvants[J]. Appl Eng Agric, 2008, 24(1): 5-10.
[12] HUANG Y B, HOFFMANN W C, LAN Y B, et al. Development of a spray system an unmanned aerial vehicle platform[J]. Appl Eng Agric, 2009, 25(6): 803-809.
[13] 薛新宇, 兰玉彬. 美国农业航空技术现状和发展趋势分析[J]. 农业机械学报, 2013, 44(5): 194-201. [14] 周志艳, 臧英, 罗锡文, 等. 中国农业航空植保产业技术创新发展战略[J]. 农业工程学报, 2013, 29(24): 1-10. [15] 陈盛德, 兰玉彬, 李继宇, 等. 小型无人直升机喷雾参数对杂交水稻冠层雾滴沉积分布的影响[J]. 农业工程学报, 2016, 32(17): 40-46. [16] 邱白晶, 王立伟, 蔡东林, 等. 无人直升机飞行高度与速度对喷雾沉积分布的影响[J]. 农业工程学报, 2013, 29(24): 25-32. [17] 秦维彩, 薛新宇, 周立新, 等. 无人直升机喷雾参数对玉米冠层雾滴沉积分布的影响[J]. 农业工程学报, 2014, 30(5): 50-56. [18] ZHU H P, MASOUD S, ROBERT D F. A portable scanning system for evalution of spray deposit distribution[J]. Comput Electron Agr, 2011, 76(1): 38-43.
[19] 廖娟, 臧英, 周志艳, 等. 作物航空喷施作业质量评价及参数优选方法[J]. 农业工程学报, 2015, 31(S2): 38-46. [20] HUANG Y B, THOMSON S J, HOFFMANN W C, et al. Development and prospect of unmanned aerial vehicle technologies for agricultural production management[J]. Int J Agric Biol Eng, 2013, 6(3): 1-9.
[21] 张盼, 吕强, 易时来, 等. 小型无人机对柑橘园的喷雾效果研究[J]. 果树学报, 2016, 33(1): 34-42.