• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

水稻根际土壤溶磷菌的分离、鉴定及对水稻的促生作用

武志海, 孙合美, 杨美英, 卢冬雪, 岳胜天, 付丽

武志海, 孙合美, 杨美英, 卢冬雪, 岳胜天, 付丽. 水稻根际土壤溶磷菌的分离、鉴定及对水稻的促生作用[J]. 华南农业大学学报, 2017, 38(1): 50-57. DOI: 10.7671/j.issn.1001-411X.2017.01.009
引用本文: 武志海, 孙合美, 杨美英, 卢冬雪, 岳胜天, 付丽. 水稻根际土壤溶磷菌的分离、鉴定及对水稻的促生作用[J]. 华南农业大学学报, 2017, 38(1): 50-57. DOI: 10.7671/j.issn.1001-411X.2017.01.009
WU Zhihai, SUN Hemei, YANG Meiying, LU Dongxue, YUE Shengtian, FU Li. Isolation and identification of phosphate solubilizing bacteria from rice rhizosphere soil, and promoting effect on rice plant growth[J]. Journal of South China Agricultural University, 2017, 38(1): 50-57. DOI: 10.7671/j.issn.1001-411X.2017.01.009
Citation: WU Zhihai, SUN Hemei, YANG Meiying, LU Dongxue, YUE Shengtian, FU Li. Isolation and identification of phosphate solubilizing bacteria from rice rhizosphere soil, and promoting effect on rice plant growth[J]. Journal of South China Agricultural University, 2017, 38(1): 50-57. DOI: 10.7671/j.issn.1001-411X.2017.01.009

水稻根际土壤溶磷菌的分离、鉴定及对水稻的促生作用

基金项目: 

国家自然科学基金 31201687

详细信息
    作者简介:

    武志海(1975—), 男,副教授,博士,E-mail: wuzhihai1116@163.com

    孙合美(1988—), 女,硕士,E-mail: 602132215@qq.com

    通讯作者:

    杨美英(1974—),女,副教授,博士,E-mail: jlaumeiying@163.com

    †表示对本文贡献相同

  • 中图分类号: S565.101

Isolation and identification of phosphate solubilizing bacteria from rice rhizosphere soil, and promoting effect on rice plant growth

  • 摘要:
    目的 

    为明确水稻根际溶磷菌株溶磷能力及其对水稻植株及根际土壤磷含量的影响。

    方法 

    利用溶磷圈法从水稻根际土壤中分离获得具有较强溶解Ca3(PO4)2能力的2株细菌NDW1和NDW3,根据16S rDNA对菌株进行鉴定。以NBRIP为基础培养基,通过正交试验对2株菌株利用氮源、碳源及初始pH进行优化,鉴定菌株的吲哚乙酸(IAA)分泌量,研究溶磷菌对水稻的促生作用,以及对土壤速效磷和水稻幼苗全磷含量的影响。

    结果 

    菌株NDW1和菌株NDW3分别被鉴定为Enterobacter sp.和Serratia sp.,2株菌株溶磷的最佳条件组合均为葡萄糖、蛋白胨及初始pH 6。2株菌株24 h内最高溶磷量分别为294.95和312.93 μg·mL-1,且都可分泌IAA。土培和沙培条件下,溶磷菌NDW3对水稻株高、根长、最大叶长及地上干质量都有明显的促进作用,并且NDW3在2种种植条件下均显著增加了根际土壤速效磷及水稻植株全磷含量。

    结论 

    从水稻根际土壤分离获得2株溶磷能力较好的细菌菌株Enterobacter sp. NDW1和Serratia sp. NDW3,菌株NDW3对水稻的促生作用强于菌株NDW1。

    Abstract:
    Objective 

    To determine the ability of phosphate dissolving of phosphate solubilizing bacteria(PSB)in rice rhizosphere, and study the effect of PSB on soluble phosphorus contents in rice plants and rhizosphere soil.

    Method 

    Two bacteria strains NDW1 and NDW3 with strong ability of dissolving Ca3(PO4)2 were isolated from rice rhizosphere soil based on the halo zone formation on media due to phosphate solubilization, and identified by 16S rDNA method. Phosphorus dissolving conditions of two strains were optimized by orthogonal test with NBRIP as the basic medium. The production of indole-3-acetic acid(IAA) were determined. The effects of NDW1 and NDW3 on promotion of rice growth, the soil available phosphorus contents and plant total phosphorus contents were studied.

    Result 

    NDW1 and NDW3 were identified as Enterobacter sp. and Serratia sp.. The best combination of carbon, nitrogen source and pH for phosphate solubilition by NDW1 and NDW3 were both the combination of glucose, peptone and pH 6. The highest phosphorus contents dissolved by NDW1 and NDW3 were 294.95 and 312.93 μg·mL-1 after 24 h incubation, respectively. Both PSB could produce IAA. NDW3 significantly increased the shoot height, root length, maximum leaf length and above-ground dry mass of rice plant in both soil culture and sand culture. NDW3 also significantly increased the contents of soil available phosphorus and rice total phosphorus under both culture conditions.

    Conclusion 

    Enterobacter sp. NDW1 and Serratia sp. NDW3 isolated from rice rhizosphere soil have strong ability of phosphate dissolving. The growth promoting effect of NDW3 for rice plant is better than that of NDW1.

  • 图  1   菌株NDW1和NDW3溶磷效果

    Figure  1.   Phosphate solubilizing effects of bacteria NDW1 and NDW3

    图  2   基于菌株NDW1、NDW3和其他溶磷菌16S rDNA序列构建的系统发育树

    Figure  2.   Phylogeny tree of 16S rDNA sequences from NDW1, NDW3 and other phosphoate solubilizing strains

    图  3   不同碳源、氮源对菌株溶磷量和生长的影响

    柱状图为菌株溶磷量,折线图为菌液光密度。

    Figure  3.   Effect of different carbon sources and nitrogen sources on phosphorus contents dissolved by bacteria strains and bacterial growth

    图  4   不同pH对菌株溶磷量和生长的影响

    柱状图为菌株溶磷量,折线图为菌液光密度。

    Figure  4.   Effect of different pH values on phosporus contents dissolved by bacteria strains and bacterial growth

    图  5   不同处理对水稻根际土壤速效磷含量及幼苗全磷含量的影响

    沙培条件下,CK1:加全磷营养液,CK2:加Ca3(PO4)2和无磷营养液;土培条件下,CK1:不加Ca3(PO4)2,CK2:加Ca3(PO4)2; 2种种植条件下,NDW1和NDW3处理分别在CK2处理的基础上接种相应菌株。相同种植条件不同柱子上相同小写字母表示不同处理间差异不显著(P>0.05, Duncan’s法)。

    Figure  5.   Effects of different treatments on soil available phosphorus contents and total phosphorus contents of rice seedlings

    表  1   菌株溶磷的正交试验结果1)

    Table  1   Results of the orthogonal test of phosphate solubilizing by bacteria strains

    序号 NDW1 序号 NDW3
    碳源 氮源 pH 溶磷量/(μg·mL-1) 碳源 氮源 pH 溶磷量/(μg·mL-1)
    1 1 1 1 281.60 1 1 1 1 278.12
    2 1 2 2 294.95 2 1 2 2 312.93
    3 1 3 3 207.35 3 1 3 3 245.02
    4 2 1 2 2.07 4 2 1 2 5.40
    5 2 2 3 4.55 5 2 2 3 4.55
    6 2 3 1 39.34 6 2 3 1 37.60
    7 3 1 3 7.76 7 3 1 3 6.94
    8 3 2 1 5.34 8 3 2 1 19.05
    9 3 3 2 32.50 9 3 3 2 30.50
    k1 261.30 97.14 108.76 k1 278.69 96.82 111.59
    k2 15.32 101.61 109.84 k2 15.85 112.18 116.28
    k3 15.20 93.06 73.22 k3 18.83 104.37 85.50
    R 246.10 8.55 36.62 R 262.84 15.36 30.77
    最优组合 1 2 2 最优组合 1 2 2
    主次顺序 碳源>pH >氮源 主次顺序 碳源>pH >氮源
    1)碳源1、2、3分别表示葡萄糖、麦芽糖、蔗糖;氮源1、2、3分别表示牛肉膏、蛋白胨、硝酸铵;pH 1、2、3分别表示pH为5、6、7。
    下载: 导出CSV

    表  2   溶磷菌产IAA的测定

    Table  2   Measurements of IAA production of two phosphorus solubilizing strains

    King培养液 菌株 ρ定量(IAA)/(μg·mL-1) 定性
    加色氨酸 NDW1 11.37± 0.36 粉色
    NDW3 15.62± 0.83 粉色
    不加色氨酸 NDW1 5.41± 0.71 浅粉色
    NDW3 5.60± 0.24 浅粉色
    下载: 导出CSV

    表  3   不同处理对水稻幼苗性状的影响1)

    Table  3   Effects of different treatments on traits of rice seedlings

    种植条件 处理 株高/cm 根长/cm 最大叶长/cm 地上干质量/mg 地下干质量/mg w(叶绿素)/(μg·g-1)
    沙培 CK1 31.67±4.58b 9.50±0.10b 21.57±0.72b 29.00±7.21ab 8.33±0.58b 81.64±7.43b
    CK2 32.03±0.80b 9.46±0.23ab 19.27±0.83c 27.67±4.04b 8.67±1.53ab 79.27±0.17ab
    NDW1 34.20±1.91ab 9.73±0.11ab 20.93±1.00b 30.67±3.79ab 9.67±1.15ab 88.90±9.53ab
    NDW3 37.53±1.00a 9.83±0.25a 23.47±0.58a 39.00±5.57a 11.00±2.00a 103.57±9.37a
    土培 CK1 31.20±1.11b 9.73±0.31b 19.73±0.23c 44.67±4.04b 17.67±5.86b 37.82±2.36b
    CK2 31.80±0.87b 9.83±0.25b 21.40±1.60bc 47.67±2.08b 18.33±3.51ab 54.82±0.39a
    NDW1 32.93±0.42ab 10.03±0.21ab 22.47±0.31ab 49.33±2.08b 26.67±5.50ab 56.67±0.18a
    NDW3 34.87±1.70a 10.37±0.20a 23.93±1.92a 58.00±5.29a 18.00±3.00a 59.72±2.81a
    1) 沙培条件下,CK1:加全磷营养液,CK2:加Ca3(PO4)2和无磷营养液;土培条件下,CK1:不加Ca3(PO4)2,CK2:加Ca3(PO4)2; 2种种植条件下,NDW1和NDW3处理分别在CK2处理的基础上接种相应菌株。相同种植条件同列数据后相同小写字母表示不同处理间差异不显著(P>0.05, Duncan’s法)。
    下载: 导出CSV
  • [1]

    KHAN M S, ZAIDI A, AHEMAD M, et al. Plant growth promotion by phosphate solubilizing fungi-current perspective[J]. Arch Agron Soil Sci, 2010, 56(1): 73-98. doi: 10.1080/03650340902806469

    [2] 胡莹莹, 张民, 宋付朋.控释复肥中磷素在马铃薯上的效应研究[J].植物营养与肥料学报, 2003, 9(2): 174-177. doi: 10.11674/zwyf.2003.0208
    [3]

    SHARMA S B, SAYYED R Z, TRIVEDI M H, et al. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils[J]. Springer Plus, 2013, 2(1): 587-601. doi: 10.1186/2193-1801-2-587

    [4] 谢亚萍, 李爱荣, 闫志利, 等.不同供磷水平对胡麻磷素养分转运分配及其磷肥效率的影响[J].草业学报, 2014, 23(1): 158-166. doi: 10.11686/cyxb20140119
    [5] 刘聪, 林维, 孙珑, 等.黑土区林地土壤高效解磷细菌的分离、筛选及其解磷效果[J].东北林业大学学报, 2013, 41(11): 83-86. doi: 10.3969/j.issn.1000-5382.2013.11.020
    [6]

    HARIPRASED P, NIRANJANA S R. Isolation and characterization of phosphate solubilizing rhisobacteria to improve plant health of tomato[J]. Plant Soil, 2009, 316(1/2): 13-24.

    [7] 冯瑞章, 姚拓, 周万海, 等.溶磷菌对燕麦生物量及植株氮、磷含量的影响[J].水土保持学报, 2009, 23(2): 188-192. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200902040.htm
    [8]

    AHMAD F, AHMAD I, KHAN M S. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities[J]. Microbiol Res, 2008, 163(2): 173-181. doi: 10.1016/j.micres.2006.04.001

    [9] 臧威, 孙剑秋, 王鹏, 等.东北地区四种农作物根际磷细菌的分布[J].中国生态农业学报, 2009, 17(6): 1206-1210. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN200906032.htm
    [10]

    MADER P, KAISER F, ADHOLEY A, et al. Inoculation of root microorganisms for sustainable wheat rice and wheat black gram rotations in India[J]. Soil Biol Biochem, 2011, 43(3): 609-619. doi: 10.1016/j.soilbio.2010.11.031

    [11] 赵小蓉, 林启美.小麦根际与非根际解磷细菌的分布[J].华北农学报, 2001, 16(1) :111-115. http://www.cnki.com.cn/Article/CJFDTOTAL-HBNB200101020.htm
    [12] 赵小蓉, 林启美.玉米根际与非根际解磷细菌的分布[J].生态学杂志, 2001, 20(6): 62-64. http://www.cnki.com.cn/Article/CJFDTOTAL-STXZ200106015.htm
    [13]

    LIU Z, LI Y, ZHANG S, et al. Characterization of phosphate-solubilizing bacteria isolated from calcareous soils[J]. Appl Soil Ecol, 2015, 96:217-224. doi: 10.1016/j.apsoil.2015.08.003

    [14] 刘江, 谷洁, 高华, 等.秦岭山区无机磷细菌筛选及其Biolog和分子生物学鉴定[J].干旱地区农业研究, 2012, 30(1): 184-189. http://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201201033.htm
    [15] 陶涛, 叶明, 刘冬, 等.无机解磷细菌的筛选、鉴定及其溶磷能力研究[J].合肥工业大学学报, 2011, 34(2): 304-308. http://www.cnki.com.cn/Article/CJFDTOTAL-HEFE201102035.htm
    [16] 杨春武. 虎尾草和水稻抗碱机制研究[D]. 长春: 东北师范大学, 2010.
    [17]

    AUSUBEL F, BRENT R, KINGSTON R E, et al. Short protocols in molecular biology[M]. 3 ed. Hoboken: John Wiley & Sons Inc, 1995.

    [18]

    BAKERMANS C, MADSEN E. Diversity of 16S rDNA and naphthalene dioxygenase genes from coal-tar-waste-contaminated aquifer waters[J]. Microb Ecol, 2002, 44(2):95-106. https://www.ncbi.nlm.nih.gov/pubmed/12087425

    [19]

    MEHNAZ S, LAZAROVITS G. Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions[J]. Microb Ecol, 2006, 51(3): 326-335. doi: 10.1007/s00248-006-9039-7

    [20] 冯月红, 姚拓, 龙瑞军.土壤解磷菌研究进展[J].草原与草坪, 2003(1): 3-7. http://www.cnki.com.cn/Article/CJFDTOTAL-CYCP200301001.htm
    [21] 鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社, 2000:83-86.
    [22] 赵月华.植株全磷测定方法[J].科技与管理, 2012, 391(2):64. http://youxian.cnki.com.cn/yxdetail.aspx?filename=STXB20170601005&dbname=CAPJ2015
    [23]

    KUNDU B S, GAUR A C. Inoculant carriers for phosphate-solubilizing micro-organisms[J]. Indian J Agr Sci, 1981, 51(4): 252-255.

    [24] 祖元刚, 李冉, 王文杰, 等.我国东北土壤有机碳、无机碳含量与土壤理化性质的相关性[J].生态学报, 2011, 31(18): 5207-5216. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201118013.htm
    [25] 戴沈艳, 贺云举, 申卫收, 等. 1株高效解磷细菌的紫外诱变选育及其在红壤稻田施用效果[J].生态环境学报, 2010, 19(7): 1646-1652. http://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201007025.htm
    [26] 刘文干, 何园球, 张坤, 等. 1株红壤溶磷菌的分离、鉴定及溶磷特性[J].微生物学报, 2012, 52(3): 326-333. http://youxian.cnki.com.cn/yxdetail.aspx?filename=JLNY20170921004&dbname=CAPJ2015
    [27]

    HAMEEDA B, REDDY Y, HARISH K R. Effect of carbon substrates on rock phosphate solubilization by bacteria from composts and macrofauna[J]. Curr Microbiol, 2006, 53(4): 298-302. doi: 10.1007/s00284-006-0004-y

    [28] 周毅, 汪建飞, 邢素芝, 等.解磷微生物有机肥对冬小麦产量形成的影响[J].麦类作物学报, 2013, 33(3): 526-529. doi: 10.7606/j.issn.1009-1041.2013.03.021
    [29] 胡晓峰, 郭晋云, 张楠, 等. 1株溶磷抑病细菌的筛选及其溶磷特性[J].中国农业科学, 2010, 43(11): 2253-2260. doi: 10.3864/j.issn.0578-1752.2010.11.008
    [30]

    XIE H, PASTERNAK J J, GLICK B R. Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that over produce indoleacetic acid[J]. Curr Microbiol, 1996, 32(2): 67-71. doi: 10.1007/s002849900012

    [31] 郑文波, 申飞, 闫小梅, 等.红壤中产吲哚乙酸并具解磷作用的促生菌筛选鉴定及促生效果研究[J].土壤, 2015, 47(2): 361-368. http://www.cnki.com.cn/Article/CJFDTOTAL-TURA201502026.htm
    [32] 谯天敏, 李姝江, 韩珊, 等.温哥华假单胞菌菌株PAN4解磷能力及对核桃的促生作用[J].华南农业大学学报, 2015, 36(5): 117-124. doi: 10.7671/j.issn.1001-411X.2015.05.020
图(5)  /  表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-13
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2017-01-09

目录

    /

    返回文章
    返回