Estimation of genetic parameters of major growth traits and existing problems in breeding of Large White pigs
-
摘要:目的
分析温氏某育种场大白猪主要生长性状遗传参数,并探讨不同背膘测定方法的变化(从A超到B超)以及终测体质量的变化(从达100 kg体质量日龄到达115 kg体质量日龄)对育种的影响。
方法利用DMU软件和单/多性状动物模型计算了达100 kg体质量日龄(AGE)和100 kg体质量背膘厚(BF)的加性方差和窝效应方差,计算各性状遗传力,并分别评估了在只有终测体质量100 kg左右(AGE-100)或只有B超(BF-B)情况下,2016年新测定个体估计育种值(EBV)与正常遗传评估EBV的泊松相关和秩相关。
结果AGE和BF遗传力分别为0.21和0.41,窝效应分别为0.27和0.15,单/多性状模型基本保持一致;此外,在去除终测体质量115~130 kg内数据或A超测定数据的情况下,新终测个体EBV与正常情况计算EBV的泊松相关分别为0.96和0.94,秩相关分别为0.96和0.92,单/多性状模型基本保持一致。
结论调整背膘测定方法比调整终测体质量对选种影响小,应该重新选择校正公式。
Abstract:ObjectiveTo estimate genetic parameters of growth traits of Large White pigs in Wens Group, and study the effects of change in method for measuring backfat (A to B ultrasonic) and variation in final body mass (age at 100 kg to age at 115 kg body mass) on pig breeding.
MethodSingle/multi-trait animal model and DMU software were used to estimate genetic variance and variance of common litter effects for age at 100 kg body mass (AGE) and backfat thickness at 100 kg body mass (BF). We evaluated the pearson and spearman correlations between estimated breeding value (EBV) from newly measured individuals in 2016 and EBV from normal genetic evaluation under the condition of 100 kg final body mass (AGE-100) or B ultrasonic (BF-B).
ResultThe estimates of heritabilities were 0.21 and 0.41, the common litter effects were 0.27 and 0.15 for AGE and BF respectively, and the single-model and multi-model were generally consistent. Under the condition of AGE-100 or BF-B, the pearson correlations were 0.96 and 0.94, the spearman correlations were 0.96 and 0.92 for EBV from newly measured individuals and EBV from normal genetic evaluation respectively, and the single-model and multi-model were generally consistent.
ConclusionChange in method for measuring backfat has a smaller effect on breeding than compared change in final body mass. The correction formula should be re-selected.
-
Keywords:
- pig /
- growth trait /
- genetic parameter /
- correlation analysis /
- breeding
-
-
表 1 生长性状基本统计量1)
Table 1 Basic statistics for growth traits
生长性状 记录数 平均值±标准差 偏度 峰度 变异系数/% AGE 16 470 154.46±9.73 0.40 0.26 6.30 BF 16 470 13.29±2.39 0.27 0.32 17.98 AGE-100 14 569 155.14±9.57 0.44 0.33 6.17 BF-B 7 606 13.08±2.67 0.76 0.92 20.41 1)AGE、AGE-100平均值的单位为d,BF、BF-B平均值的单位为mm。 表 2 生长性状固定效应分析1)
Table 2 Fixed effect analysis of growth traits
生长性状 年份和季节 性别 df F df F AGE 21 279.81** 1 955.29** BF 21 171.52** 1 1 099.85** 1)**表示差异极显著(P<0.01)。 表 3 生长性状方差组分和遗传参数
Table 3 Variance components and genetic parameters of growth traits
指标1) 单性状模型 多性状模型 AGE BF AGE-100 BF-B AGE BF AGE-100 BF-B $σ_a^2$ 14.507 1.913 11.100 2.184 14.510 1.897 11.047 2.140 $σ_l^2$ 18.888 0.699 19.399 1.261 18.889 0.701 19.417 1.271 $σ_e^2$ 36.802 2.096 35.642 2.934 36.800 2.104 35.665 2.955 $σ_p^2$ 70.197 4.708 66.141 6.379 70.199 4.702 66.129 6.366 h2 0.207 0.406 0.168 0.342 0.207 0.403 0.167 0.366 SE 0.157 0.305 0.135 0.261 0.157 0.305 0.134 0.281 l2 0.269 0.148 0.293 0.198 0.269 0.149 0.293 0.200 1) $σ_a^2$ 为加性遗传方差, $σ_l^2$ 为窝效应方差, $σ_e^2$ 为残差方差, $σ_l^2$ 为表型方差,h2为遗传力,SE为标准误,l2为窝效应。 表 4 单/多性状模型个体EBV相关系数
Table 4 EBV correlation of single/multi-trait model
生长性状 2016年终测个体数 单性状模型 多性状模型 泊松相关 秩相关 泊松相关 秩相关 AGE~AGE-100 167 0.94 0.92 0.94 0.91 BF~BF-B 214 0.96 0.96 0.96 0.95 -
[1] 农业部办公厅.全国生猪遗传改良计划(2009—2020) 实施方案[J].中国牧业通讯, 2010 (23): 25-28. http://www.cnki.com.cn/Article/CJFDTOTAL-MYTX201023014.htm [2] 倪德斌, 刘望宏, 胡军勇.猪活体背膘厚、眼肌面积(B超)测定方法的研究[J].养殖与饲料, 2015 (1):5-9. http://www.cnki.com.cn/Article/CJFDTOTAL-YZCL201501004.htm [3] MADSEN P, S∅RENSEN P, SU G, et al. DMU-a package for analyzing multivariate mixed models[C]∥Proceedings of the 8th world congress on genetics applied to livestock production. Belo Horizonte:[s.n.], 2006:11-27.
[4] 张世轩. 全球增暖背景下中国四季的划分及与夏季降水的关系[D]. 兰州: 兰州大学, 2013. [5] KLEI B, TSURUTA S. Approximate variance for heritability estimates[DB/OL].[2016-03-14]. http://nce.ads.uga.edu/html/projects/AI_SE.pdf,
[6] BIDANEL J P, DUCOS A. Genetic correlations between test station and on-farm performance traits in Large White and French Landrace pig breeds[J]. Livest Prod Sci, 1996, 45(1):55-62. doi: 10.1016/0301-6226(95)00079-8
[7] KNAUER M T, CASSADY J P, NEWCOM D W, et al. Estimates of variance components for genetic correlations among swine estrus traits[J]. J Anim Sci, 2010, 88(9): 2913-2919. doi: 10.2527/jas.2009-2639
[8] ABELL C E, MABRY J W, DEKKERS J C M, et al. Genetic and phenotypic relationships among reproductive and post-weaning traits from a commercial swine breeding company[J]. Livest Sci, 2012, 145(1/2/3):183-188.
[9] BERESKIN B. A genetic analysis of feed conversion efficiency and associated traits in swine[J]. J Anim Sci, 1986, 62(4):910-917. doi: 10.2527/jas1986.624910x
[10] 叶健. 安徽省美系猪繁殖和生长性状遗传参数估计[D]. 北京: 中国农业大学, 2015. [11] JOHNSON Z B, CHEWNING J J, NUGENT R R. Genetic parameters for production traits and measures of residual feed intake in large white swine[J]. J Anim Sci, 1999, 77(7):1679-1685. doi: 10.2527/1999.7771679x
[12] BERRY D P, EVANS R D. Genetics of reproductive performance in seasonal calving beef cows and its association with performance traits[J]. J Anim Sci, 2014, 92(4):1412-1422. doi: 10.2527/jas.2013-6723
[13] 王重龙, 陶立, 张勤, 等. B超活体测定猪背膘厚和眼肌面积的研究[J].安徽农业科学, 2005, 33(3):451-452. http://www.cnki.com.cn/Article/CJFDTOTAL-AHNY200503057.htm [14] 杨秀娟, 邓斌, 张曦, 等.猪背膘厚与眼肌厚活体A超测量技术研究[J].西北农林科技大学学报(自然科学版), 2014, 42(5):22-28. http://www.cnki.com.cn/Article/CJFDTOTAL-XBNY201405006.htm [15] 佚名.大体型肥育猪饲养新思考[J].猪业科学, 2012(11):29. http://www.cnki.com.cn/Article/CJFDTOTAL-TJXM201211011.htm
计量
- 文章访问数: 1547
- HTML全文浏览量: 8
- PDF下载量: 2049