Expression of plasma membrane calcium channel, calcium-sensing receptor and adipogenic determination genes during the adipogenesis of porcine bone marrow mesenchymal stem cells
-
摘要:目的
研究猪骨髓间充质干细胞(Bone marrow mesenchymal stem cells, BMSCs)定向分化为脂肪细胞过程中细胞膜上钙离子通道、钙敏感受体(Calcium-sensing receptor, CaSR)基因及成脂定向相关基因的表达。
方法从5~7日龄仔猪骨髓中分离纯化出猪BMSCs,诱导猪BMSCs成脂分化。油红O法和三酰甘油法检测细胞分化聚酯状况。在成脂分化不同时间(0、1、2、5和10 d)收集细胞,利用荧光定量PCR检测锌指蛋白423(Zinc finger protein 423, Zfp423)、脂肪前体细胞因子(Preadipocyte factor 1, Pref-1)、骨形态发生蛋白2(Bone morphogenetic protein 2, BMP2)、骨形态发生蛋白4(Bone morphogenetic protein 4, BMP4)、细胞膜钙离子通道及CaSR基因的mRNA表达变化。
结果油红O染色和三酰甘油检测结果表明,成功诱导猪BMSCs成脂分化;定量PCR结果显示,在猪BMSCs成脂分化第5天,成脂定向标志基因Zfp423、脂肪前体细胞标志基因Pref-1及促进成脂分化基因BMP2、BMP4的mRNA相对表达量显著提高(P < 0.05),说明第5天是猪BMSCs成脂定向形成脂肪前体细胞的关键时期;同时,细胞膜上的电压门控钙离子通道亚基电压依赖型α/δ亚型1(Voltage-dependentalpha-2/delta subunit 1, CACNA2D1)、钙释放激活钙通道调节分子1 (Calciumr elease-activated calcium channel modulator 1, Orai1)、瞬时受体电位通道传统型1(Transient receptor potential canonical type 1, TRPC1)、瞬时受体电位通道M型7(Transient receptor potential melastatin 7, TRPM7)、瞬时受体电位通道香草素受体亚型1(Transient receptor potential vanilloid receptor1, TRPV1)基因和CaSR基因在诱导成脂第5天mRNA相对表达量也显著提高(P < 0.05),提示细胞膜钙离子通道及CaSR基因可能参与了猪BMSCs成脂分化过程。
结论揭示了猪BMSCs成脂分化过程中细胞膜钙离子通道、钙敏感受体及成脂定向相关基因的表达模式。
Abstract:ObjectiveTo investigate the mRNA expression of plasma membrane calcium channel, calcium-sensing receptor (CaSR) and adipogenic determination genes during the adipogenesis of porcine bone marrow mesenchymal stem cells (BMSCs).
MethodThe porcine BMSCs, isolated and purified from 5-7 d piglet, were induced to adipogenic differentiation. Oil red O staining and triglyceride assay were used to detect the formation of adipocytes. The cells were collected at various time points (0, 1, 2, 5, and 10 d) during the adipogenic differentiation of porcine BMSCs. The mRNA expression patterns of zinc finger protein (Zfp423), preadipocyte factor 1 (Pref-1), bone morphogenetic protein 2 (BMP2), bone morphogenetic protein 4 (BMP4), plasma membrane calcium channel and CaSR genes were detected by real-time quantitative PCR.
ResultThe results of oil red O staining and triglyceride assay indicated that porcine BMSCs were successfully induced to adipogenic differentiation. The findings of real-time quantitative PCR demonstrated that the mRNA expression of Zfp423, Pref-1, BMP2 and BMP4 significantly increased at day 5(P < 0.05), suggesting that day 5 is the key time for the adipogenic determination of porcine BMSCs. Meanwhile, the mRNA expression of voltage-dependent alpha-2/delta subunit 1 (CACNA2D1), calcium release-activated calcium channel modulator 1 (Orai1), transient receptor potential canonical type 1 (TRPC1), transient receptor potential melastatin 7 (TRPM7), transient receptor potential vanilloid receptor 1 (TRPV1) and CaSR also significantly increased at day 5, implying that calcium channels and CaSR gene might be involved in the adipogenesis of porcine BMSCs.
ConclusionOur data reveal the expression patterns of plasma membrane calcium channel, CaSR and adipogenic determination genes.
-
-
表 1 荧光定量PCR所用引物序列
Table 1 Primer sequences used for real-time quantitative PCR
-
[1] DU M, HUANG Y, DAS A K, et al. Meat science and muscle biology symposium: Manipulating mesenchymal progenitor cell differentiation to optimize performance and carcass value of beef cattle[J]. J Anim Sci, 2013, 91(3): 1419-1427. doi: 10.2527/jas.2012-5670
[2] TANG Q Q, LANE M D. Adipogenesis: From stem cell to adipocyte[J]. Annu Rev Biochem, 2012, 81: 715-736. doi: 10.1146/annurev-biochem-052110-115718
[3] WEI S J, ZHANG L F, ZHOU X, et al. Emerging roles of zinc finger proteins in regulating adipogenesis[J]. Cell Mol Life Sci, 2013, 70(23): 4569-4584. doi: 10.1007/s00018-013-1395-0
[4] GESTA S, TSENG Y H, KAHN C R. Developmental origin of fat: Tracking obesity to its source[J]. Cell, 2007, 131(2): 242-256. doi: 10.1016/j.cell.2007.10.004
[5] 王松波, 束刚, 朱晓彤, 等.骨形态发生蛋白在脂肪生成中的作用[J].中国生物化学与分子生物学报, 2009, 25(11): 997-1002. http://www.cqvip.com/Main/Detail.aspx?id=32211300 [6] WANG S, ZHOU G, SHU G, et al. Glucose utilization, lipid metabolism and BMP-Smad signaling pathway of porcine intramuscular preadipocytes compared with subcutaneous preadipocytes[J]. Cell Physiol Biochem, 2013, 31(6): 981-996. doi: 10.1159/000350116
[7] BRINI M, CALI T, OTTOLINI D, et al. Intracellular calcium homeostasis and signaling[J]. Met Ions Life Sci, 2013, 12: 119-168. doi: 10.1007/978-94-007-5561-1
[8] BISHNOI M, KONDEPUDI K K, BABOOTA R K, et al. Role of transient receptor potential channels in adipocyte biology[J]. Expert Rev Endocrinol Metabol, 2013, 8(2): 173-182. doi: 10.1586/eem.13.4
[9] GRAHAM S J, BLACK M J, SOBOLOFF J, et al. Stim1, an endoplasmic reticulum Ca2+ sensor, negatively regulates 3T3-L1 preadipocyte differentiation[J]. Differentiation, 2009, 77(3): 239-247. doi: 10.1016/j.diff.2008.10.013
[10] CHEN K H, XU X H, LIU Y, et al. TRPM7 channels regulate proliferation and adipogenesis in 3T3-L1 preadipocytes[J]. J Cell Physiol, 2014, 229(1): 60-67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0232076228
[11] VILLARROEL P, REYES M, FUENTES C, et al. Adipogenic effect of calcium sensing receptor activation[J]. Mol Cell Biochem, 2013, 384(1/2): 139-145. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0231449368
[12] DU M Q, HUANG Y Q, LU N S, et al. Characterization and differentiation into adipocytes and myocytes of porcine bone marrow mesenchymal stem cells[J]. J Integr Agr, 2014, 13(4): 837-848. doi: 10.1016/S2095-3119(13)60497-9
[13] CHEN M H, TONG Q. An update on the regulation of adipogenesis[J]. Drug Discov Today, 2013, 10(1/2): e15-e19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0231019854
[14] GUPTA R K, ARANY Z, SEALE P, et al. Transcriptional control of preadipocyte determination by Zfp423[J]. Nature, 2010, 464(7288):619-623. doi: 10.1038/nature08816
[15] 谢在春, 陈琼玉, 杨松海, 等. BMP2具有诱导C3H10T1/2细胞成脂肪分化的能力[J].中国生物化学与分子生物学报, 2008, 24(2): 142-147. doi: 10.3969/j.issn.1007-7626.2008.02.010 [16] HUANG H, SONG T J, LI X, et al.BMP signaling pathway is required for commitment of C3H10T12 pluripotent stem cells to the adipocyte lineage[J]. Proc Natl Acad Sci USA, 2009, 106(31):12670-12675. doi: 10.1073/pnas.0906266106
[17] HAMMARSTEDT A, HEDJAZIFAR S, JENNDAHL L, et al. WISP2 regulates preadipocyte commitment and PPAR gamma activation by BMP4[J]. Proc Natl Acad Sci USA, 2013, 110(7): 2563-2568. doi: 10.1073/pnas.1211255110
[18] SUN C, QI R, WANG L, et al. p38 MAPK regulates calcium signal-mediated lipid accumulation through changing VDR expression in primary preadipocytes of mice[J]. Mol Biol Rep, 2012, 39(3): 3179-3184. doi: 10.1007/s11033-011-1084-8
[19] HU R, HE M L, HU H, et al. Characterization of calcium signaling pathways in human preadipocytes[J]. J Cell Physiol, 2009, 220(3): 765-770. doi: 10.1002/jcp.v220:3
[20] JOO J I, KIM D H, CHOI J W, et al. Proteomic analysis for antiobesity potential of capsaicin on white adipose tissue in rats fed with a high fat diet[J]. J Proteome Res, 2010, 9(6): 2977-2987. doi: 10.1021/pr901175w
[21] CHEN K H, XU X H, LIU Y, et al. TRPM7 channels regulate proliferation and adipogenesis in 3t3-l1 preadipocytes[J]. J Cell Physiol, 2014, 229(1): 60-67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0232076228
[22] HE Y H, HE Y, LIAO X L, et al. The calcium-sensing receptor promotes adipocyte differentiation and adipogenesis through PPAR gamma pathway[J]. Mol Cell Biochem, 2012, 361(1/2): 321-328.