Microstructures and properties of porous filter parts ofselective laser melted 316L stainless steel
-
摘要:目的
揭示选区激光熔化316L不锈钢粉末成型多孔过滤零件的成型规律和机理。
方法试验设计孔洞尺寸为1 mm的圆形、正方形多孔316L不锈钢过滤零件,采用选区激光熔化方法进行成型,选用光学显微镜、扫描电子显微镜、X射线衍射等手段对其组织特征和性能进行分析检测,采用显微硬度计测量其显微硬度。
结果获得了无气孔、裂纹、偏析等缺陷, 且致密度达到95%的成型组织。组织内部主要由垂直于界面呈现外延生长的树枝晶组成,所得组织分层均匀,各层间呈冶金结合,定向凝固特征明显。
结论多孔过滤零件成型件由奥氏体组成,显微硬度为:258~294 HV0.3。采用选区激光熔化方法可以成型孔洞尺寸较小的过滤零件。
Abstract:ObjectiveTo reveal the formation patterns and mechanisms of selective laser melted 316L stainless steel porous filter parts.
MethodBoth cubical and cylindrical 316L stainless steel porous filter parts with 1 mm pore size were designed and formed by selective laser melting (SLM). Microstructures and properties of these filter parts were investigated using optical microscope, scanning electron microscope and X-ray diffraction. Micro hardness of the parts was measured using microhardness tester.
ResultThe formed filter parts were obtained with 95% density and without defects such as pore, crack and segregation. The intra-structure was mainly composed of dendrite crystals which were vertical to the interface and grew along the epitaxy. The microstructure obtained had even layers which were metallurgically bonded. There was clear evidence of directional solidification for the formed parts.
ConclusionThe formed parts are composed of austenite, and microhardness ranges from 258 to 294 HV0.3. SLM can be used in prototyping filter parts with relatively small pore size.
-
-
-
[1] 高晓薇, 邵薇薇, 刘学欣, 等.城镇化与工业化进程对农业用水的影响[J].人民黄河, 2015, 37(7): 59-63. doi: 10.3969/j.issn.1000-1379.2015.07.015 [2] 康超, 黄一, 路婕.农业水资源利用新技术研究进展[J].河南农业, 2015(1): 28-29. doi: 10.3969/j.issn.1006-950X.2015.01.022 [3] 杨骞, 刘华军.污染排放约束下中国农业水资源效率的区域差异与影响因素[J].数量经济技术经济研究, 2015, 32(1): 124-128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=663042337 [4] SUN J F, YANG Y Q, WANG D. Mechanical properties of regular hexahedral lattice structure formed by selective laser melting[J]. Laser Phys, 2013, 23(6): 1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0229940746
[5] VAN B S, KERCKHOFS G, MOESEN M. Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures[J]. Mat Sci Eng A-Struct, 2015, 528(24): 7423-7431. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0223076374
[6] SONG B, DONG S, ZHANG B, et al. Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V[J]. Mater Design, 2012, 35: 120-125. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0226430756
[7] SUN J F, YANG Y Q, WANG D. Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method[J]. OPT Laser Technol, 2013, 49: 118-124. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0229893776
[8] YADROITSEV I, KRAKHMALEVB P, YADROITSAVAA I, et al. Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder[J].J Mater Process Tech, 2013, 213(4): 606-613. doi: 10.1016/j.jmatprotec.2012.11.014
[9] ZHANG B, DEMBINSKI L, CODDET C. The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder[J]. Mat Sci Eng A-Struct, 2013, 584: 21-31. doi: 10.1016/j.msea.2013.06.055
[10] GIOVANNI S, LIANG H, RICHARD M E, et al. Surface roughness analysis, modelling and prediction in selective laser melting[J]. J Mater Process Tech, 2013, 213(4): 589-597. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0228888955
[11] RIEMER A, LEUDERS S, THOENE M, et al. On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting[J]. Eng Fract Mech, 2014, 120: 15-25. doi: 10.1016/j.engfracmech.2014.03.008
[12] HUANG W D, GENG X G, ZHOU Y H. Primary spacing selection of constrained dendritic growth[J]. J Cryst Growth, 1993, 134(1/2): 105-115. doi: 10.1016-0022-0248(93)90015-O/
[13] FLEMINGS M C. Solidification technology in the foundry and cast house[M]. London: The institute of metals, 1980: 42-45.
[14] SHUZU L, HUNT J D. Numerical analysis of dendritic and cellular array growth: The spacing adjustment mechanisms[J]. J Cryst Growth, 1992, 123(1/2): 17-34. doi: 10.1007%2FBF02648950
[15] HUNT J D. Numerical analysis of dendritic and cellular growth of a pure material investigating the transition from 'array' to 'isolated' growth[J]. Acta Metall Mater, 1991, 39(9):2117-2133. doi: 10.1016/0956-7151(91)90182-Z