• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

青枯菌侵染不同抗病烟草品种的防御性酶活性及代谢组分差异分析

周星洋, 张功营, 董丽红, 杨恩兰, 万树青

周星洋, 张功营, 董丽红, 杨恩兰, 万树青. 青枯菌侵染不同抗病烟草品种的防御性酶活性及代谢组分差异分析[J]. 华南农业大学学报, 2016, 37(3): 73-81. DOI: 10.7671/j.issn.1001-411X.2016.03.011
引用本文: 周星洋, 张功营, 董丽红, 杨恩兰, 万树青. 青枯菌侵染不同抗病烟草品种的防御性酶活性及代谢组分差异分析[J]. 华南农业大学学报, 2016, 37(3): 73-81. DOI: 10.7671/j.issn.1001-411X.2016.03.011
ZHOU Xingyang, ZHANG Gongying, DONG Lihong, YANG Enlan, WAN Shuqing. Differences of defensive enzyme activities and metabolites between resistant and susceptible tobacco cultivars infected by Ralstonia solanacearum[J]. Journal of South China Agricultural University, 2016, 37(3): 73-81. DOI: 10.7671/j.issn.1001-411X.2016.03.011
Citation: ZHOU Xingyang, ZHANG Gongying, DONG Lihong, YANG Enlan, WAN Shuqing. Differences of defensive enzyme activities and metabolites between resistant and susceptible tobacco cultivars infected by Ralstonia solanacearum[J]. Journal of South China Agricultural University, 2016, 37(3): 73-81. DOI: 10.7671/j.issn.1001-411X.2016.03.011

青枯菌侵染不同抗病烟草品种的防御性酶活性及代谢组分差异分析

基金项目: 

广东省烟草专卖局(公司)科技项目 粤烟[2009]17号

详细信息
    作者简介:

    周星洋(1989—),男,硕士研究生,E-mail: 569056710@qq.com

    通讯作者:

    万树青(1953—),男,教授,博士,E-mail: wanshuqing@scau.edu.cn

  • 中图分类号: S432.42

Differences of defensive enzyme activities and metabolites between resistant and susceptible tobacco cultivars infected by Ralstonia solanacearum

  • 摘要:
    目的 

    为烟草抗病育种和抗性鉴定提供生化代谢指标。

    方法 

    采用茎部注射法对抗病品种粤烟97和感病品种长脖黄接种青枯雷尔菌Ralstonia solanacearum,并采用比色法和GC-MS法分别进行相关防御性酶活性及代谢物质的测定。

    结果 

    抗病品种粤烟97的PAL、SOD、POD、PPO活性,接菌组与对照组均分别高于感病品种长脖黄的接菌组与对照组;抗病品种粤烟97和感病品种长脖黄分别在接菌后第7天和第5天,PAL活性高于对照组,其余时间酶活性接菌组均低于对照组;抗病品种粤烟97和感病品种长脖黄在受青枯雷尔菌侵染前期,SOD、POD、PPO酶活性均提高,随着时间延长酶活性均低于对照组。POD和PPO同工酶凝胶电泳表明:抗病品种粤烟97同工酶类型多于感病品种长脖黄;接菌后第3天,粤烟97的同工酶谱带宽度与色度增强,而长脖黄无增强现象。说明抗病品种能快速应对外界刺激,加速相关抗病物质的形成。代谢物检测表明:抗病品种粤烟97接菌组中肌肉肌醇、烟碱、苹果酸、L-苏氨酸等物质的相对质量分数高于对照组,而感病品种长脖黄接菌组中这些物质均低于对照组,反映品种间抗青枯病能力的强弱可能与上述物质有关。

    结论 

    烟草不同抗病品种叶片中PAL、SOD、POD、PPO酶活性的高低,以及上述代谢物质含量的变化,可作为反映烟草抗青枯病的生化指标。

    Abstract:
    Objective 

    In order to provide the biochemical and metabolic basis of tobacco breeding for disease resistance and resistance identification.

    Method 

    Resistant (Yueyan 97) and susceptible (Changbohuang) tobacco cultivars were inoculated with Ralstonia solanacearum by trunk injection. Defensive enzyme activities and metabolites were measured by using colorimetric method and GC-MS.

    Result 

    The activities of phenylanine ammonia lyase (PAL), superoxide dismutase (SOD), peroxidase (POD) and polyphenol oxidase (PPO) in the resistant cultivar 'Yueyan 97' were higher than those in the susceptible cultivar 'Changbohuang' with the same inoculation treatment. The PAL activities of Yueyan 97 and Changbohuang were higher than that in control on the seventh and fifth days after inoculation, respectively. The PAL activities of both cultivars were lower compared to control at any other time. For both cultivars, SOD, POD and PPO activities increased compared to control in the earlier days, but were lower compared to control during the later time period. The types of POD and PPO isozymes in the resistant cultivar 'Yueyan 97' were higher than those in the susceptible cultivar 'Changbohuang'. The width and color of isozyme bands of Yueyan 97 were enhanced at 3 d after inoculation, while those of Changbohuang were not enhanced. It suggested that the resistant cultivar could quickly respond to external stimuli and accelerate the formation of defense-related substances. Detection of metabolites showed that the relative contents of some substances in Yueyan 97 such as myo-inositol, nicotine, malic acid, and L-threonine were higher compared to control, but in Changbohuang were lower compared to control, suggesting that cultivar differences in resistance against R. solanacearum might be related to these substances.

    Conclusion 

    These four defensive enzyme activities and the contents of the above metabolites could be used as biochemical indexes for evaluating tobacco resistance against R. solanacearum.

  • 图  1   不同抗病烟草品种接种青枯雷尔菌后叶片PAL活性(以鲜质量计)的变化

    相同时间同一烟草品种不同柱子上方凡是有一个相同小写字母者,表示该品种对照组和接菌组间差异不显著(P>0.05,Duncan's法)。

    Figure  1.   Changes of PAL activities (based on fresh mass) in leaves of resistant and susceptible tobacco cultivars after inoculation of Ralstonia solanacearum

    图  2   不同抗病烟草品种接种青枯雷尔菌后SOD活性(以鲜质量计)的变化

    相同时间同一烟草品种不同柱子上方凡是有一个相同小写字母者,表示该品种对照组和接菌组间差异不显著(P>0.05,Duncan's法)。

    Figure  2.   Changes of SOD activities (based on fresh mass) in leaves of resistant and susceptible tobacco cultivars after inoculation of Ralstonia solanacearum

    图  3   不同抗病烟草品种接种青枯雷尔菌后POD活性(以鲜质量计)的变化

    相同时间同一烟草品种不同柱子上方凡是有一个相同小写字母者,表示该品种对照组和接菌组间差异不显著(P>0.05,Duncan's法)。

    Figure  3.   Changes of POD activities (based on fresh mass) in leaves of resistant and susceptible tobacco cultivars after inoculation of Ralstonia solanacearum

    图  4   不同抗病烟草品种接种青枯雷尔菌后PPO活性(以鲜质量计)的变化

    相同时间同一烟草品种不同柱子上方凡是有一个相同小写字母者,表示该品种对照组和接菌组间差异不显著(P>0.05,Duncan's法)。

    Figure  4.   Changes of PPO activities (based on fresh mass) in leaves of resistant and susceptible tobacco cultivars after inoculation of Ralstonia solanacearum

    图  5   不同抗病烟草品种接种青枯雷尔菌后叶片POD同工酶谱带

    CK:对照组,TR:接菌组;A:抗病品种粤烟97,B:感病品种长脖黄。

    Figure  5.   Electrophoretic isoenzyme patterns of POD in leaves of resistant and susceptible tobacco cultivars after inoculation of Ralstonia solanacearum

    图  6   不同抗病烟草品种接种青枯雷尔菌后叶片PPO同工酶谱带

    CK:对照组, TR:接菌组;A:抗病品种粤烟97, B:感病品种长脖黄。

    Figure  6.   Electrophoretic isoenzyme patterns of PPO in leaves of resistant and susceptible tobacco cultivars after inoculation of Ralstonia solanacearum

    图  7   不同抗病烟草品种接种青枯雷尔菌后代谢组分的GS-MS总离子流图

    1:感病品种长脖黄对照组;2:感病品种长脖黄接菌组;3:抗病品种粤烟97对照组;4:抗病品种粤烟97接菌组。

    Figure  7.   Total ion chromatograms of metabolites of resistant and susceptible tobacco cultivars after inoculation of Ralstonia solanacearum

    表  1   不同抗病烟草品种接种青枯雷尔菌后品种间代谢物差异比较1)

    Table  1   Comparison of metabolites from resistant and susceptible tobacco cultivars after inoculation of Ralstonia solanacearum

    下载: 导出CSV
  • [1]

    HAYWARD A C. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum[J]. Annu Rev Phytopathol, 1991, 29: 65-87. doi: 10.1146/annurev.py.29.090191.000433

    [2] 刘雅婷, 张世光.烟草青枯病的研究进展[J].云南农业大学学报, 2001, 16(1): 72-76. doi: 10.3969/j.issn.1004-390X.2001.01.021
    [3] 宋瑞芳, 丁永乐, 宫长荣, 等.烟草抗病性与防御酶活性间的关系研究进展[J].中国农学通报, 2007, 23(5): 309-314. doi: 10.3969/j.issn.1000-6850.2007.05.072
    [4]

    WALTERS D, WALSH D, NEWTON A, et al. Induced resistance for plant disease control: Maximizing the efficacy of resistance elicitors[J]. Phytopathology, 2005, 95(12): 1368-1373. doi: 10.1094/PHYTO-95-1368

    [5]

    NANDAKUMAR R, BABU S, VISWANATHAN R, et al. Induction of systemic resistance in rice against sheath blight disease by Pseudomonas fluorescens[J]. Soil Biol Biochem, 2001, 33(4/5): 603-612. doi: 10.1016-S0038-0717(00)00202-9/

    [6]

    JUNG W J, JIN Y L, KIM Y C, et al. Inoculation of Paenibacillus illinoisensis alleviates root mortality, activates of lignification-related enzymes, and induction of the isozymes in pepper plants infected by Phytophthora capsici[J]. Biol Control, 2004, 30(3): 645-652. doi: 10.1016/j.biocontrol.2004.03.006

    [7]

    TORRES A M, SATOVIC Z, CANOVAS J, et al. Genetics and mapping of new isozyme loci in Vicia faba L. using trisomics[J]. Theor Appl Genet, 1995, 91(5): 783-789. http://www.ncbi.nlm.nih.gov/pubmed/24169917

    [8]

    WARNKE S E, DOUCHES D S, BRANHAM B E. Isozyme analysis supports allotetrapoloid inheritance in tetraploid creeping bluegrass (Agrostis palustris Huds.)[J]. Crop Sci, 1998, 38(3): 801-805. doi: 10.2135/cropsci1998.0011183X003800030030x

    [9]

    HUANG H, LAYNE D R, PETERSON R N. Using isozyme polymorphisms for identifying and assessing genetic variation in cultivated pawpaw (Asimina triloba (L.) Dunal)[J]. J Am Soc Hortic Sci, 1997, 122(4): 504-511. http://journal.ashspublications.org/content/122/4/504.abstract

    [10] 匡传富, 罗宽.烟草品种对青枯病抗病性及抗性机制的研究[J].湖南农业大学学报(自然科学版), 2002, 28(5): 395-398. http://d.old.wanfangdata.com.cn/Periodical/hunannydx200205010
    [11] 黎定军, 周清明.烟草品种(系)对青枯病菌的抗性鉴定与分析[J].湖南农业大学学报, 1996, 22(3): 275-277. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=HNND603.012&dbname=CJFD&dbcode=CJFQ
    [12] 薛应龙, 欧阳光察, 澳绍根.植物苯丙氨酸解氨酶的研究:Ⅳ:水稻幼苗中PAL活性的动态变化[J].植物生理学报, 1983, 9(3): 301-306. http://d.old.wanfangdata.com.cn/Periodical/gskx200305004
    [13] 邹琦.植物生理学实验指导[M].北京:中国农业出版社, 2003.
    [14] 张志良.植物生理学试验指导[M].北京:高等教育出版社, 2003: 268-271.
    [15] 李靖, 利容千, 袁文静.黄瓜感染霜霉病菌叶片中一些酶活性的变化[J].植物病理学报, 1991, 21(4): 39-45. http://cdmd.cnki.com.cn/Article/CDMD-10193-2009162676.htm
    [16]

    TIKUNOV Y, LOMMEN A, DE VOS C R, et al. A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles[J]. Plant Physiol, 2005, 139(3): 1125-1137. doi: 10.1104/pp.105.068130

    [17]

    ROESSNER U, WAGNER C, KOPKA J, et al. Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry[J]. Plant J, 2000, 23(1): 131-142. doi: 10.1046/j.1365-313x.2000.00774.x

    [18]

    ADAMKOVA S, LUHOVA L, PETRIVALSKY M, et al. Characterization of enzyme phenylalanine ammonia-lyase and its role in activation of defensive mechanisms in plants[J]. Chem Listy, 2006, 100(7): 486-494.

    [19] 寿森炎, 冯壮志, 殷一平, 等.番茄抗感青枯病品种的生理生化差异[J].浙江大学学报(农业与生命科学版), 2005, 31(5): 550-554. http://d.old.wanfangdata.com.cn/Periodical/zjdxxb-nyysm200505010
    [20] 刘家忠, 龚明.植物抗氧化系统研究进展[J].云南师范大学学报(自然科学版), 1999, 19(6): 1-11. http://d.old.wanfangdata.com.cn/Periodical/ahnykx201736001
    [21] 胡青平, 徐建国, 薄芳芳, 等.烟草感染青枯菌前后POD及同工酶的变化[J].中国农学通报, 2007, 23(6): 497-500. doi: 10.3969/j.issn.1000-6850.2007.06.108
    [22] 宋凤鸣, 郑重, 葛秀春.活性氧及膜脂过氧化在植物-病原物互作中的作用[J].植物生理学通讯, 1996, 32(5): 377-385. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZWSL199605023&dbname=CJFD&dbcode=CJFQ
    [23]

    JOSEPH L M, KOON T T, MAN W S. Antifungal effects of hydrogen peroxide and peroxidase on spore germination and mycelial growth of Pseudocercospora species[J]. Can J Bot, 1998, 76(12): 2119-2124. https://www.mendeley.com/research-papers/antifungal-effects-hydrogen-peroxide-peroxidase-spore-germination-mycelial-growth-pseudocercospora-s/

    [24]

    PATEL S J, SUBRAMANIAN R B, JHA Y S. Biochemical and molecular studies of early blight disease in tomato[J]. Phytoparasitica, 2011, 39(3): 269-283. doi: 10.1007/s12600-011-0156-6

    [25]

    YUBEDEE A G. Role of polyphenol oxidase, peroxidase and total phenol content in differential resistance of Dioscorea species to Fusarium moniliforme[J]. Indian J Agr Sci, 1998, 68(10): 644-646.

    [26]

    GULSEN O, EICKHOFF T, HENG-MOSS T, et al. Characterization of peroxidase changes in resistant and susceptible warm-season turfgrasses challenged by Blissus occiduus[J]. Arthropod-Plant Inte, 2010, 4(1): 45-55. doi: 10.1007/s11829-010-9086-3

    [27] 张树生, 胡蕾, 刘忠良, 等.植物体内抗病相关酶与植物抗病性的关系[J].安徽农学通报, 2006, 12(13): 48-49. doi: 10.3969/j.issn.1007-7731.2006.13.021
    [28] 崔彦玲, 张环.番茄叶霉病抗性与苯丙氨酸解氨酶的相关性[J].华北农学报, 2003, 18(1): 79-82. doi: 10.3321/j.issn:1000-7091.2003.01.022
    [29] 蒋选利, 李振岐, 康振生.过氧化物酶与植物抗病性研究进展[J].西北农林科技大学学报(自然科学版), 2001, 29(6): 124-129. doi: 10.3321/j.issn:1671-9387.2001.06.031
    [30] 张梦, 谢益民, 杨海涛, 等.肌醇在植物体内的代谢概述:肌醇作为细胞壁木聚糖和果胶前驱物的代谢途径[J].林产化学与工业, 2013, 33(5): 106-114. http://d.old.wanfangdata.com.cn/Periodical/lchxygy201305021
    [31] 沈嘉, 程新胜.植物抗虫性物质烟碱的研究进展[J].热带亚热带植物学报, 2007, 15(5): 459-464. doi: 10.3969/j.issn.1005-3395.2007.05.018
    [32] 宋超, 张立军, 贾永光, 等.植物的苹果酸代谢和转运[J].植物生理学通讯, 2009, 45(5): 419-428. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL200905003.htm
    [33]

    DEBOLT S, MELINO V, FORD C M. Ascorbate as a biosynthetic precursor in plants[J]. Ann Bot-London, 2007, 99(1): 3-8. doi: 10.1093/aob/mcl236

图(7)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-23
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2016-05-09

目录

    /

    返回文章
    返回