Abstract:
Objective In order to evaluate the xylem mobility of four different pesticides, including glucose-fipronil conjugate GTF and three types of commodity pesticides (fipronil, thiamethoxam and abamectin) in plants.
Method The roots of soybean seedlings were immersed in solutions containing one of those pesticides. After grinding and extracting the roots, stems and leaves, high performance liquid chromatograph (HPLC) was used to detect the pesticide contents of the extracts.The xylem mobility was represented by the pesticide content conducted to the above ground part of the seedling.
Result GTF had superior xylem mobility with relatively uniform distribution after entering the plants. Thiamethoxam exhibited efficient xylem mobility, mainly concentrated in the upper part of the plants, and was able to saturate in a short time. Fipronil had relatively weak xylem mobility, and most concentrated in the roots. Abamectin permeated and accumulated in the roots without upward transportation, suggesting none xylem mobility.
Conclusion The introduction of glycosyl can significantly optimize the xylem mobility of the carrier pesticide fipronil. Glycosylation of pesticide is an effective approach to develop new systemic pesticide.