不同试验条件下猪肉中气单胞菌生长预测模型的建立和验证
Establishment and Validation of Growth Predictive Model of Aeromonas spp.from Pork Under Different Experimental Conditions
-
摘要: 采用响应曲面模型(RSM)研究温度、pH、初始菌浓度对冷却猪肉中气单胞菌Aeromonas spp.生长的影响.应用Gompertz模型对不同试验条件下气单胞菌的生长曲线进行拟合,一级模型的参数生长率(U)和迟滞期(LPD)采用RSM方法构建冷却猪肉中气单胞菌生长的二级模型.然后随机选择试验组合对建立的方程进行验证,并应用计算均方误差(MSE)、准确因子(AF)和偏差因子(BF)的方法对建立的生长预测方程进行数学检验。结果表明,修正的Gompertz 模型可以较好地模拟不同试验条件下冷却猪肉中气单胞菌的生长情况(R2>0.96),温度、pH和初始菌浓度对气单胞菌生长影响显著(P<0.05),数学检验参数MSE较小,AF和BF接近1.0,均在可接受范围,用RSM方法建立的生长预测模型可以较好地模拟冷却猪肉中气单胞菌在不同试验条件下的生长情况。Abstract: The purpose of this paper was to study the effects of temperature, pH and inoculation level on the growth parameters of Aeromonas spp. in chilled pork under laboratory conditions. The curves generated within different conditions were fitted by Gompertz function as primary model. Then two parameters (growth rate and lag-time) of the growth curves were modeled using a quadratic polynomial equation of response surface model (RSM) as secondary model. Additional experimental conditions within the research domain were randomly selected for model validation, and mathematical testing were also applied for the developed models, including the mean square error (MSE), accuracy factor (AF) and bias factor (BF).The results indicated that modified Gompertz function could be used to model Aeromonas spp. growth under different experimental condtions (R2>0.96). Moreover, the temperature, pH and inoculation level on the growth of Aeromonas spp. were significant (P<0.05), and RSM with lower MSE and acceptable AF and BF values provided a useful and accurate method of predicting the growth parameters of Aeromonas spp.
-
Keywords:
- Aeromonas spp. /
- chilled pork /
- predictive microbiology /
- response surface model
-
水分是植物生长发育过程中的关键因子[1],因此高产速生林的高耗水问题引起广泛关注[2],筛选耐旱速生树种是林业领域的研究热点[3-6].植物受到水分胁迫后光反应中心受损,发生一系列生理生态变化,其中探讨光合作用受损原理一直是植物抗逆研究的重点.近年来叶绿素荧光分析技术受到广大学者关注[7-8],它是研究光系统受损的主要途径,并且具有反应“内在性”的特点,因此被视为研究植物光合作用与环境关系的内在探针[9-10].目前,对叶绿素荧光动力学的研究已经成为热点,在干旱、盐胁迫、低温、强光、施肥过量等抗逆生理研究中得到了广泛应用[11-13].
由于叶绿素荧光参数能够诊断植物体内光合机构运转状况[14-17],所以叶绿素荧光动力学参数在植物抗旱生理和抗旱植物选育方面具有重要意义[18-19].国内许多学者已将叶绿素荧光技术应用于农业、园艺作物抗旱研究中,而应用于林木水分胁迫相对不多[20].胡杨Populus euphratica、灰叶胡杨P. pruinosa、八棱海棠Malus micromalus、平邑甜茶Malus hupehensis、香椿Toona sinensis、金太阳杏Armeniaca vulgaris等植物会出现光合速率下降,并有不同程度的叶绿体结构的损坏.胡杨、灰叶胡杨、八棱海棠、平邑甜茶、杂交鹅掌楸Liriodendron chinense×L.tulipifera、金太阳杏和香椿随着干旱胁迫加剧,PSⅡ最大光化学效率(Fv/Fm)、光量子产量(Yield)、表观光合电子传递速率(ETR)、光化学淬灭系数(qP)均呈下降趋势,而各树种初始荧光(F0)均有不同程度的上升[21-24].
竹柳(bamboo willow)又名美国竹柳,是由美国寒竹、朝鲜柳、筐柳组合杂交选育的优良品系.尾巨桉Eucalyptus urophylla×E. grandis是尾叶桉E.urophylla和巨桉E.grandis的杂交种,也是我国南方速生丰产林的首选树种[25, 12].对于干旱胁迫下尾巨桉和竹柳的叶绿素荧光参数的研究鲜见报道.本研究利用OS5P脉冲调制式叶绿素荧光仪(美国)对这2个树种的叶绿素荧光特性[Yield、ETR、qP、非光化学淬灭系数(qN)、F0、最大荧光(Fm)和Fv/Fm这7个参数]进行了比较研究,旨在为华南地区选育优良的抗旱树种提供理论支持和科学依据.
1. 材料与方法
1.1 试验材料与干旱处理
试验材料为盆栽竹柳和尾巨桉1年生苗木各30株,平均苗高、地径分别为:竹柳(0.45±0.07) m、(9.10±2.12) mm, 尾巨桉(0.40±0.03) m、(3.92±0.65) mm.于2011年5月在华南农业大学林学院温室内盆栽培育,花盆规格为25 cm×30 cm(上口径×高),盆栽土壤为华南农业大学树木园内林地赤红壤,土壤田间持水量为(26.87±2.07)%,容重为(1.34±0.07) g·cm-3.于2011年7月1日浇透水后停止浇水,让其自然干旱.
1.2 叶绿素荧光参数测定
对每株植株中生长位置和叶片朝向相同、大小相似的5~8片叶片进行挂牌标记,并于7月1日进行第1次测量,作为对照(正常水分条件),之后在干旱第3~24天每天进行测量,同树种每次测3株,共3个重复,试验开始后每2 d从2种苗木中分别选定5株,用波兰Easy Test公司生产的便携式土壤湿度、温度和盐度计(FOM/mts-波兰)进行土壤水分测量,测定苗木盆内土壤的含水量.
测量前,叶片暗适应20 min,利用美国OPTI-sciences公司脉冲调制式叶绿素荧光仪(OS5P-美国)进行F0、Fm、可变荧光(Fv,Fv=Fm-F0)、Fv/Fm、qP,qN及Yield共7个指标的测定.
1.3 干旱胁迫程度划分
土壤含水量占田间持水量80%以上为正常水平,50%~70%为轻度干旱,30%~50%为中度干旱,低于30%为重度干旱[26-27].将试验时间按干旱胁迫程度划分如表 1.
表 1 不同干旱胁迫程度划分Table 1. Divisions of drought stress severity1.4 数据处理
用Microsoft Excel 2003对试验数据进行统计,并用SPSS19.0进行相关性分析.
2. 结果与分析
2.1 干旱胁迫对实际光量子产量的影响
Yield能够反映PSⅡ反应中心在部分关闭情况下的实际原初光能捕获效率,用来衡量植物光合电子传递的量子产量,可以作为植物叶片光合电子传递速率快慢的相对指标[28].正常条件下尾巨桉和竹柳的Yield分别为:(0.791±0.02)和(0.779±0.026) μmol·m-2·s-1(表 2),干旱胁迫第8天之前,两树种Yield降幅较小,降幅分别为7.33%和7.79%,比较平稳,到第12天,尾巨桉依旧平稳(降幅10.66%),而竹柳自第8天后开始呈现急剧下降趋势,干旱胁迫第24天,尾巨桉和竹柳的Yield较对照分别下降63.51%和61.70%,两者降幅相差较小,据表 2可知,对照和最后处理之间出现极显著差异(P<0.01).以上结果表明在轻度干旱胁迫时期,尾巨桉和竹柳的Yield受影响较小,严重干旱胁迫时期,2种植物的Yield均出现显著抑制.
表 2 不同水分条件下叶绿素荧光参数方差分析和多重比较结果1)Table 2. Variance analyses and multiple comparisons of chlorophyll fluorescence characteristics under drought stress2.2 干旱胁迫条件下表观光合电子传递速率的变化
ETR在一定程度上可以反应PSⅡ反应中心的电子捕获效率.随着干旱胁迫的加剧,尾巨桉和竹柳的ETR均呈现下降趋势(表 2),在干旱胁迫第24天,尾巨桉和竹柳的ETR分别下降为正常水分条件下的48.02%和25.12%.尾巨桉的ETR降幅明显大于竹柳(表 2).
2.3 干旱胁迫条件下荧光淬灭分析
荧光淬灭包括qP和qN,qP表示PSⅡ天线色素吸收的光能用于光化学电子传递的份额[29].要保持高的光化学淬灭系数就要使PSⅡ反应中心处于“开放”状态,所以光化学淬灭系数又在一定程度上反应了PSⅡ反应中心开放程度[30-32].尾巨桉和竹柳的qP在轻度干旱胁迫时期降幅较小,到第12天2个树种分别较正常水分条件下降了13.50%和10.55%,竹柳和尾巨桉的qP分别在第12和第16天开始急剧下降,到干旱胁迫第24天,分别下降为正常水分条件下的43.88%和49.45%,胁迫末期与对照相比,竹柳的降幅(49.80%)小于尾巨桉(58.67%),PSⅡ的光合电子传递活性受到严重影响.
非光化学淬灭是PSⅡ天线色素吸收的光能不能用于光合电子传递,以热形式耗散掉的光能部分,其热耗散能力可以用qN表示[33].就供试树种而言,qN随干旱程度逐渐增加(表 2),干旱胁迫第16天,尾巨桉和竹柳qN分别为0.45和0.38,至干旱末期尾巨桉和竹柳qN上升幅度分别为217.59%和146.40%.竹柳qN上升幅度较尾巨桉小,表明在受到干旱胁迫时,竹柳PSⅡ反应中心的开放程度较尾巨桉低.
2.4 干旱胁迫对叶绿素荧光动力学参数Fm、F0、Fv/Fm的影响
F0是指PSⅡ反应中心处于完全开放时的荧光产量.F0大小主要与PSⅡ天线色素内的最初激子密度、天线色素以及PSⅡ反应中心的激发能传递速率的结构状态及叶绿素含量有关,而与光合作用光化学反应无关[34].随着干旱条件的加剧,尾巨桉和竹柳的F0均呈上升趋势(表 3),到干旱胁迫末期,上升幅度分别为92.03%和49.11%,说明尾巨桉和竹柳在干旱胁迫条件下PSⅡ反应中心均受到一定程度的破坏,且尾巨桉PSⅡ反应中心受到破坏的程度大于竹柳.SD和CK间均有显著差异(P<0.05).
Fm是指PSⅡ反应中心完全关闭时荧光的产量,其反映PSⅡ电子传递情况[35].随着干旱程度加剧,尾巨桉和竹柳的Fm不断下降(表 3),到SD期,其Fm分别为1 323和1 645.尾巨桉的下降幅度(23.42%)高于竹柳(11.26%).
表 3 不同干旱处理下叶绿素荧光动力学参数方差分析和多重比较结果1)Table 3. Variance analyses and multiple comparisons (Duncan's) of the kinetic parameters of chlorophyll fluorescence under drought stressFv/Fm是反映PSⅡ反应中心原初光能转化效率的一个重要指标,其在受到光抑制和胁迫时明显降低[21, 36].从表 3中可以看出:CK期,尾巨桉和竹柳的初始Fv/Fm分别为0.81±0.01和0.76±0.02,随着干旱程度加重,其值均呈下降趋势;到SD期,下降幅度分别为31.55%和21.84%,SD和CK间有显著差异(P<0.05).尾巨桉下降幅度明显大于竹柳,说明尾巨桉在干旱程度加剧时,更易出现光抑制,因此良好的水分条件有助于尾巨桉保持较高的光合生产力,保证其正常生长.
2.5 土壤干旱胁迫与荧光参数相关性分析
从表 4可以看出,尾巨桉的土壤质量含水量与ETR呈极显著正相关(P<0.01,r=0.940),与F0呈极显著负相关(P<0.01,r=-0.925),与Fm和Fv/Fm呈显著正相关(P<0.05).叶绿素荧光参数间均呈极显著相关(P<0.01).
表 4 尾巨桉叶绿素荧光参数与土壤含水量的相关性1)Table 4. Correlation coefficients concerning chlorophyll fluorescence parameters of Eucalyptus urophylla×E.grandis and soil moisture表 5显示,竹柳的土壤质量含水量与ETR、Fm和Fv/Fm均呈极显著正相关(P<0.01),相关系数分别为:r=0.961、r=0.960、r=0.877;与Yield和qP呈显著正相关(P<0.05),与F0和qN呈显著负相关(P<0.05).叶绿素荧光参数间均呈极显著相关(P<0.01).
表 5 竹柳叶绿素荧光参数与土壤含水量的相关系数1)Table 5. Correlation coefficients concerning chlorophyll fluorescence parameters of bamboo willow and soil moisture3. 讨论与结论
干旱胁迫下,尾巨桉和竹柳Yield均呈现先平稳后显著下降的趋势.但在胁迫初期,尾巨桉平稳时期较长,表明轻度干旱下尾巨桉比竹柳实际光能捕获效率高,在胁迫后期,两树种Yield均下降,表明光合程度受到强烈抑制.孙景宽等[37]研究的干旱胁迫下沙枣和孩儿拳头Yield变化趋势也与本研究呈现相似的结果.ETR均呈下降趋势,且尾巨桉下降幅度显著大于竹柳,表明竹柳PSⅡ反应中心的电子捕获效率高,光合能力显著大于尾巨桉.李春霞等[22]也发现随着干旱胁迫,平邑甜茶和八棱海棠ETR均呈现下降趋势.qP的大小反映了PSⅡ开放中心的数目,其值越大,表明PSⅡ的电子传递活性越高,尾巨桉和竹柳的qP随干旱胁迫的加强而不断下降,胁迫初期下降趋势缓慢,尾巨桉比竹柳在抗旱初期表现更强的电子传递活性,而胁迫后期竹柳的下降幅度小于尾巨桉,在重度干旱下,竹柳抗旱性优于尾巨桉.qN是PSⅡ反应中心对天线色素吸收过量光能后的热耗散能力,是一种保护机制,干旱胁迫下,竹柳的qN上升幅度显著大于尾巨桉,非辐射热能耗散能力优于尾巨桉,对光合系统的破坏亦小.F0增加是PSⅡ反应中心出现不可逆失活和破坏的表现,其值下降表明光合色素热耗散增加[27].在干旱胁迫下,竹柳F0的上升幅度小于尾巨桉,不可逆破坏程度低于尾巨桉,因此耐旱能力大于尾巨桉.尾巨桉和竹柳Fm随着干旱胁迫不断加强而呈下降趋势,尾巨桉的下降幅度大于竹柳,电子传递更易受到胁迫影响.正常条件下,尾巨桉和竹柳的Fv/Fm分别为:0.81±0.01和0.76±0.02,随着干旱程度加重,Fv/Fm均呈下降趋势,且尾巨桉下降幅度明显大于竹柳,说明尾巨桉在受到干旱胁迫时出现更严重的光抑制.本试验对叶绿素荧光动力学参数F0、Fm和Fv/Fm的研究结果与李志军等[21]相符.
在土壤含水量与各叶绿素荧光参数的相关性上,桉树和竹柳的表观光合电子传递速率(ETR)均呈极显著相关(P<0.01),其中,土壤含水量与尾巨桉的F0呈极显著负相关,与Fm以及Fv/Fm均显著相关(P<0.05),因此,两树种ETR对干旱胁迫敏感性较高.李志军等[21]对胡杨和灰叶胡杨的叶绿素荧光参数间相关性的研究表明,各参数间有连锁相关关系,与本研究结果相似.
综上所述,在轻度干旱下,尾巨桉在Yield、qP上表现出优于竹柳的抗旱性,而在重度干旱下,竹柳在ETR、qN、F0、Fm和Fv/Fm的指标上,均比尾巨桉表现较强的适应性,ETR对两树种干旱响应较敏感.生产上可在轻度干旱区栽植尾巨桉,在重度干旱区栽植竹柳.但由于叶绿素荧光参数受环境影响较大,各个指标的变化还需要进一步的研究和论证.
计量
- 文章访问数: 1552
- HTML全文浏览量: 0
- PDF下载量: 1374