广西桉树人工林二元立木材积动态模型研究

    岑巨延

    岑巨延. 广西桉树人工林二元立木材积动态模型研究[J]. 华南农业大学学报, 2007, 28(1): 91-95. DOI: 10.7671/j.issn.1001-411X.2007.01.022
    引用本文: 岑巨延. 广西桉树人工林二元立木材积动态模型研究[J]. 华南农业大学学报, 2007, 28(1): 91-95. DOI: 10.7671/j.issn.1001-411X.2007.01.022
    CEN Ju-yan. Study on Two-Way Tree Volume Dynamic Model of Eucalyptus Plantations in Guangxi[J]. Journal of South China Agricultural University, 2007, 28(1): 91-95. DOI: 10.7671/j.issn.1001-411X.2007.01.022
    Citation: CEN Ju-yan. Study on Two-Way Tree Volume Dynamic Model of Eucalyptus Plantations in Guangxi[J]. Journal of South China Agricultural University, 2007, 28(1): 91-95. DOI: 10.7671/j.issn.1001-411X.2007.01.022

    广西桉树人工林二元立木材积动态模型研究

    基金项目: 广西林业科技攻关项目

    Study on Two-Way Tree Volume Dynamic Model of Eucalyptus Plantations in Guangxi

    • 摘要: 以广西速生丰产桉树人工林156块样地的305株伐倒木数据为基础,运用现代建模思想和方法,优化模型结构,研究建立了速生丰产桉树人工林二元立木材积动态模型.经模型自检,总相对误差为-0.2%,平均相对误差为-0.26%,预估精度达98.7%;适用性检验,立木材积估计的总相对误差、平均相对误差均在±1%以内,远小于规定的±3%,满足林业数表建模要求.
    • 自噬是真核生物体内一种重要的分解代谢过程。错误折叠的蛋白或受损的细胞器被自噬体包裹运输至液泡,在液泡腔中被水解酶降解[1]。分解产物会被储存于液泡,或被运输回细胞质中重复利用[2]。在模式植物拟南芥Arabidopsis thaliana中,现已鉴定到大约40个自噬相关基因ATGs(Autophagy-related genes),且大部分ATGs对自噬体的形成是必需的[3-4]

      研究发现,过表达ATGs可以增强植物的环境适应性。自噬作为物质循环途径之一,对氮素的再利用和营养饥饿的抵抗至关重要。过表达AtATG8aAtATG8eAtATG8fAtATG8g的拟南芥植株氮素再活化能力增强,转基因植株中有更多的氮素从衰老叶片中活化并运输到种子中,从而使种子的蛋白质含量显著提高[5]。拟南芥中异源过表达水稻OsATG8b或苹果MdATG18a均可以增强拟南芥对氮饥饿或碳饥饿的耐受性[6-8]。自噬过程也是植物抗旱、抗盐的关键途径之一。在干旱条件下,过表达MdATG18aMdATG8i的苹果植株,以及异源过表达香蕉MaATG8f的拟南芥植株,都表现出更强的耐干旱能力,而且在这些过表达植株中,光合效率提高,可溶性糖和氨基酸的积累量明显增加[9-11]。在高盐环境下,过表达MdATG10苹果植株的根系具有更强的水分吸收能力,植株能够保持较高的光合效率从而维持生长[12]。除此之外,过表达MdATG18a的苹果植株不仅对碱性和高温等不良环境的耐受力增强,而且对斑褐病的免疫力也明显提高[13-15]

      自噬相关蛋白ATG7通过催化ATG8-ATG3偶联物的形成激活ATG8的脂化作用,被认为是自噬过程中的关键限速因子之一[16]atg7缺失突变体不能形成自噬体,在碳/氮饥饿条件下生长受阻,叶片早衰,繁殖能力下降[2, 17]。过表达AtATG7的拟南芥植株自噬活性显著提高,转基因植株不仅具有衰老延缓、生物量和产量提高、种子含油量增加等优势,而且对病原菌的抗性也明显增强[16]

      苜蓿Medicago spp.是一种广泛种植的饲料作物,同时也是豆科模式植物之一[18]。通过过表达苜蓿ATGs使自噬活性水平提高,是改善苜蓿农艺性状的一种潜在手段。然而苜蓿ATGs的生物学功能是否保守,以及其对植物的抗逆能力是否有促进作用在很大程度上仍然未知。本文以蒺藜苜蓿Medicago truncatula中关键的自噬相关基因MtATG7为研究对象,构建拟南芥异源过表达MtATG7的稳定遗传植株,并在碳/氮饥饿条件下进行表型分析。本研究旨在为利用MtATG7基因改良苜蓿和其他植物的农艺性状提供理论依据。

      拟南芥生态型为Columbia,拟南芥T-DNA插入的自噬功能缺陷突变体atg7-3(SAIL_11_H07)和GFP-ATG8e植株为Chen等保存[19],通过杂交得到atg7-3×GFP-ATG8e纯和植株,构建35S::MtATG7-NOS过表达载体,通过农杆菌Agrobacterium tumefaciens介导侵染Col、atg7-3atg7-3×GFP-ATG8e的过表达株系获得MtATG7-oxatg7/MtATG7MtATG7/atg7-3/GFP-ATG8e转基因植株。

      蒺藜苜蓿生态型为A17。

      培养条件:光暗周期为16 h光照/8 h黑暗,温度为22 ℃,光照强度为120 µmol·m−2·s−1

      以蒺藜苜蓿cDNA为模板,利用常规PCR方法扩增MtATG7基因的编码序列(2097 bp)。分别在上、下游引物中引入BamHI和PstI的酶切位点,通过BamHI/PstI双酶切插入到双元表达载体pCambia1300,使用无缝克隆试剂盒(金沙生物,SC612)进行连接,完成携带35S::MtATG7的植物表达载体构建。使用农杆菌GV3101介导的花序浸泡法[20]转化拟南芥Col-0、atg7-3atg7-3×GFP-ATG8e植株。将转基因拟南芥T0代种子在含有25 mg/L潮霉素的筛选培养基上经过3代筛选获得6个纯合株系,选取2个代表株系用于后续试验。所有构建均经测序验证正确,构建引物信息见表1

      表  1  PCR特异性引物序列
      Table  1.  Specific primers used for PCR
      引物类型
      Primer type
      引物名称
      Primer name
      引物序列(5′→3′)
      Primer sequence
      目的基因引物
      Target gene primer
      MtATG7-F gaacacgggggactGGATCCATGGCTTTGCTCCAATTTAT
      MtATG7-R AATGTTTGAACGATCTGCAGTCATATTTCAAAACAATCTT
      自噬突变体鉴定引物
      Autophagy mutant identification primer
      atg7-F TCTCTTGTTGGTCAAGCCTC
      atg7-R CATTGTTGGTCTAGAGTTCG
      LB1 GCCTTTTCAGAAATGGATAAATAGCCTTGCTT
      下载: 导出CSV 
      | 显示表格

      通过Phytozomev13网站(https://phytozome-next.jgi.doe.gov/)查询不同物种中ATG7基因的氨基酸序列,利用Pfam数据库(http://pfam.xfam.org/search/sequence)分析不同物种ATG7基因的保守基序;利用MEGA11软件构建系统发育树。

      缺碳处理:将在1/2MS培养基平板上生长11 d的拟南芥幼苗,转移至无糖1/2MS培养基平板上,并放置于黑暗环境下培养使植物不能进行光合作用,继续培养9 d后进行表型观察和拍照。缺碳存活率的测定:将土中生长3周的拟南芥植株转移至黑暗条件下培养7 d,随后转移到正常生长条件下恢复8 d,统计植株存活率。试验经3次生物学重复。

      拟南芥幼苗在正常1/2MS培养基平板上生长11 d后,转移至缺氮1/2MS培养基平板上,继续培养7 d后进行表型观察和拍照。

      取适量拟南芥幼苗称量鲜质量,加入2 mL N,N−二甲基甲酰胺(N,N-Dimethylformamide, DMF),4 ℃遮光提取2 d,每个样品设3个生物学重复。按以下公式计算叶绿素含量:叶绿素浓度= 20.21×D645 nm+8.02×D663 nm,叶绿素含量=叶绿素浓度×提取液体积×稀释倍数/样品鲜质量。

      取适量2周龄的拟南芥幼苗,整株取样至2 mL离心管中,经液氮速冻后,用均质破碎仪研磨样品。加入200 μL RIPA Buffer并充分振荡混匀,4 ℃放置10 min;4 ℃、12000 r·min−1离心 30 min,吸取上清。蛋白溶液经95 ℃加热5 min后,使用变性聚丙烯酰胺凝胶(SDS-PAGE)进行电泳分离。使用PVDF膜,在4 ℃条件下恒电流200 mA转膜120 min。将膜置于质量分数为5%的脱脂奶粉中封闭1 h,然后使用Anti-GFP(Invitrogen A11122)抗体4 ℃孵育过夜。1×TBST洗膜3次后孵育二抗2 h。1×TBST溶液重复洗膜3次,将PVDF膜放至干净的培养皿中,用显色液试剂盒进行显色后,使用化学发光成像仪拍照保存。

      试验所得数据使用统计软件SPSS 19.0进行分析,其中叶绿素含量测定数据n=8,存活率数据n=3,样品之间差异采用单因素方差分析和LSD多重比较方法进行统计检验,P<0.05视为差异显著,数据用平均值±标准差表示。

      为了解蒺藜苜蓿MtATG7的进化特征和生物学功能,本研究对MtATG7的氨基酸序列与拟南芥等其他植物的同源基因构建了系统发育树,并分析了MtATG7及其同源基因的序列相似性。结果表明,在分析的15种植物中,蒺藜苜蓿的ATG7与红车轴草Trifolium pratense、鹰嘴豆Cicer arietinumATG7亲缘关系最近,与模式植物拟南芥的亲缘关系相对较远。利用Pfam数据库中对ATG7的氨基酸序列进行结构域分析,发现在所有15种植物中都具有典型的ATG7特征结构域,说明ATG7的功能很可能是高度保守的(图1)。

      图  1  不同植物ATG7基因的系统发育树分析和保守结构域预测
      Figure  1.  Phylogenetic tree analysis and domain prediction of ATG7 gene from different species

      根据MtATG7的DNA序列设计PCR引物,以蒺藜苜蓿的cDNA为模板进行PCR扩增(表1)。PCR产物经琼脂糖凝胶电泳后得到约2000 bp的特异条带,与2097 bp的MtATG7编码序列长度吻合,说明MtATG7基因扩增成功(图2A)。进一步使用无缝克隆方法,将MtATG7序列连接到表达载体上,构建了35S::MtATG7双元过表达载体(图2B)。在农杆菌介导下,通过花序浸泡法分别侵染拟南芥野生型(Col)、atg7-3atg7-3/GFP-ATG8e植株,获得了多个独立的过表达株系,包括MtATG7-OXatg7/MtATG7atg7-3/MtATG7/GFP-ATG8e植株。每个基因型植株挑选两个纯合的株系进行后续试验。

      图  2  MtATG7过表达载体的构建
      A:苜蓿MtATG7基因的克隆;B:35S::MtATG7过表达载体的菌落PCR结果,M:Trans2K Plus II DNA Marker,1~10:菌落;目标条带大小为2097 bp左右
      Figure  2.  Construction of MtATG7 overexpression vector
      A: Cloning of MtATG7 gene in Medicago; B: Colony PCR results of 35S::MtATG7 overexpression vector, M: Trans2KPlus II DNA Marker, 1−10: Colony; The target band size is about 2097 bp

      将苗龄11 d的转基因植株转移至无糖培养基上,并放置在黑暗环境下培养,使植物光合作用停止并产生碳饥饿。在缺碳胁迫条件下,atg7幼苗的叶片明显变黄并伴随白化现象,但野生型Col与互补植株atg7/MtATG7#1,atg7/MtATG7#2的叶片仍呈现绿色,说明MtATG7能够挽救atg7突变体的生长缺陷表型(图3A、3B)。过表达植株MtATG7-OX#1和MtATG7-OX#2和野生型的叶片一样都保持相对嫩绿。对缺碳胁迫前后的幼苗进行叶绿素含量的测定,结果显示缺碳胁迫后,atg7突变体的叶绿素含量和野生型相比显著下降,但异源转基因的atg7/MtATG7植株和atg7突变体相比叶绿素含量明显提高(图4)。该结果表明MtATG7能够互补AtATG7抵抗碳饥饿胁迫的生物学功能。

      图  3  MtATG7促进转基因拟南芥抵抗碳胁迫
      A:将苗龄11 d的野生型Col、自噬突变体atg7以及转基因atg7/MtATG7#1、atg7/MtATG#2、MtATG7-OX#1、MtATG7-OX#2拟南芥幼苗移到不含糖的1/2MS培养基中,黑暗条件下培养9 d后的表型;B:在碳胁迫9 d后分别对每个株系取2株幼苗拍照;比例尺=5 mm
      Figure  3.  MtATG7 promotes resistance to carbon starvation in transgenic Arabidopsis
      A: Phenotypes for 11-day-old wild-type Col, autophagy mutant atg7, and transgenic atg7/MtATG7#1, atg7/MtATG#2, MtATG7-OX#1, MtATG7-OX#2 Arabidopsis seedlings after transferred to sugar-free 1/2MS medium and cultured under dark conditions for 9 days; B: After 9 days of carbon starvation stress, two seedlings from each line were photographed; Scale bar = 5 mm
      图  4  碳胁迫前后的拟南芥幼苗叶绿素含量
      数据为平均值±标准差, n=8;相同处理柱子上方的不同小写字母表示各株系之间差异显著(P<0.05,LSD法)
      Figure  4.  Chlorophyll content of Arabidopsis seedling before and after carbon stress
      Data are means ± SDs, n=8; Different lowercase letters on bars of the same treatment indicate significant differences among strains (P<0.05,LSD test)

      将苗龄3周的拟南芥转移到黑暗条件下处理7 d,探究过表达MtATG7对拟南芥碳饥饿胁迫存活率的影响。研究发现,在碳饥饿胁迫下,atg7因自噬功能缺陷导致生长受到抑制,即使恢复光照也无法存活,但自噬功能正常的植株都有一定比例植株能够存活下来(图5)。值得注意的是,多个过表达MtATG7的植株,包括atg7/MtATG7#1、MtATG7-OX#1和MtATG7-OX#2,存活率和野生型Col相比都明显提高(图6)。上述结果表明过表达MtATG7基因可以提高拟南芥对碳饥饿胁迫的耐受能力。

      图  5  MtATG7促进转基因拟南芥在碳胁迫下的生存
      图中为将苗龄3周的野生型Col、自噬突变体atg7以及转基因atg7/MtATG7#1、atg7/MtATG#2、MtATG7-OX#1、MtATG7-OX#2拟南芥植株黑暗处理7 d,恢复光照8 d后的表型;比例尺=1 cm
      Figure  5.  MtATG7 promotes survival of transgenic Arabidopsis under carbon starvation
      3-week-old Arabidopsis seedlings of wild type Col, autophagy mutant atg7, and transgenic lines atg7/MtATG7#1, atg7/MtATG#2, MtATG7-OX#1, and MtATG7-OX#2 were treated in the dark for 7 days,and the phenotypes after 8 days of recovery under light are shown in the figure; Scale bar = 1 cm
      图  6  碳胁迫后的拟南芥幼苗的存活率
      统计各株系在恢复光照8 d后的存活率;柱子上方的不同小写字母表示各株系之间差异显著(P<0.05,LSD法)
      Figure  6.  Survival of Arabidopsis seedlings after carbon stress
      The survival rate of each strain after 8 days of light recovery are calculated; Different lowercase letters on bars indicate significant differences among strains (P<0.05,LSD test)

      GFP-ATG8e重组蛋白能够被自噬体降解,并释放游离的GFP,因此GFP/GFP-ATG8e比值是植物自噬活性的重要指标之一。为了探究MtATG7过表达植株是否通过自噬途径增强碳饥饿胁迫耐受性,将GFP-ATG8eatg7/GFP-ATG8e以及转基因的atg7/MtATG7/GFP-ATG8e置于碳饥饿胁迫下,并检测GFP-ATG8e蛋白的剪切活性。结果显示atg7突变体在碳饥饿胁迫下,不能产生正常的游离的GFP条带,而转基因的atg7/MtATG7/GFP-ATG8e植株的GFP-ATG8剪切活性能够恢复到接近Col的水平(图7)。以上结果表明,MtATG7能够互补拟南芥内源AtATG7的功能,自噬活性的恢复很可能是碳饥饿胁迫耐受性提高的原因。

      图  7  MtATG7使拟南芥atg7突变体的自噬活性恢复
      免疫印迹试验检测拟南芥GFP-ATG8e、atg7-3/GFP-ATG8e以及转基因MtATG7/atg7-3/GFP-ATG8e的GFP剪切活性;上样量对照为丽春红染色的Rubisco蛋白
      Figure  7.  MtATG7 restores autophagy activity of atg7 mutant in Arabidopsis
      Western blot was used to detect the GFP cleavage activities of GFP-ATG8e, atg7-3/ ATG8e and MtATG7/atg7-3/ATG8e; Rubisco protein with ponceau staining was used as the loading control

      将苗龄11 d的MtATG7过表达植株转移至缺氮培养基上培养,结果表明,在缺氮处理后atg7和野生型相比叶片明显变黄,叶绿素含量下降(图89)。而互补植株atg7/MtATG7的叶绿素含量和野生型相近,说明MtATG7能够挽救atg7突变体的缺陷表型(图9)。其中atg7/MtATG7#1和MtATG7-OX#1两个株系在缺氮处理后,几乎所有植株的叶片仍然保持绿色,而野生型已有少量植株开始发紫(图8A、8B)。叶绿素测量结果也表明,atg7/MtATG7#1和MtATG7-OX#1两个株系的叶绿素含量和野生型相比有轻微增加(图9)。

      图  8  MtATG7促进转基因拟南芥抵抗氮胁迫
      A:将苗龄11 d的野生型Col、自噬突变体atg7以及转基因atg7/MtATG7#1、atg7/MtATG#2、MtATG7-OX#1、MtATG7-OX#2拟南芥幼苗移入缺氮的1/2MS培养基中培养7 d后的表型;B:在氮胁迫7 d后分别对每个株系取2株幼苗拍照;比例尺=5 mm
      Figure  8.  MtATG7 promotes resistance to nitrogen starvation in transgenic Arabidopsis
      A: Phenotypes for 11-day-old wild-type Col, autophagy mutant atg7, and transgenic atg7/MtATG7#1, atg7/MtATG#2, MtATG7-OX#1, MtATG7-OX#2 Arabidopsis seedlings after transferred to nitrogen-deficient 1/2MS medium and cultured for 7 days; B: After 7 days of nitrogen starvation stress, two seedlings from each line were photographed; Scale bar = 5 mm
      图  9  氮胁迫前后的拟南芥幼苗叶绿素含量
      数据为平均值±标准差, n=8;相同处理柱子上方的不同小写字母表示各株系之间差异显著(P<0.05,LSD法)
      Figure  9.  Chlorophyll content of Arabidopsis seedlings before and after N stress
      Data are means ± SDs, n=8; Different lowercase letters on bars of the same treatment indicate significant differences among strains (P<0.05,LSD test)

      碳元素是糖类物质和蛋白质分子的基础,对植物体内能量和物质的稳态至关重要。一方面,植物遭受短期碳饥饿时,细胞自噬能够降解储存于叶片中的瞬时淀粉,为细胞提供额外的能量以渡过逆境[21];另一方面,在长期碳饥饿时,细胞自噬能够降解叶绿体及其中的蛋白质,维持重要组织的氨基酸供应,从而提高植物的生存能力[22]。氮元素是氨基酸、核苷酸、叶绿素的重要组成成分,也是植物生存所必需的元素之一。在低氮条件下,细胞自噬能够将衰老叶片中的氮素分解再活化,使之能够被运输至新生叶片,实现生长发育效率的最大化;同时氮素的再活化也是种子成熟的关键步骤之一[23]

      本研究发现MtATG7蛋白具有保守的ATG7特征结构域,异源过表达MtATG7能够改善atg7突变体在碳/氮饥饿条件下的叶片早衰性状,而且在缺碳胁迫下MtATG7过表达植株的存活率显著提高,从野生型的55.5%提高至85.2%~92.6%。缺碳条件下,MtATG7能够使atg7突变体的自噬剪切活性恢复,说明MtATG7能够参与拟南芥自噬途径的调控。ATG7是植物自噬过程的限速酶之一,在自噬过程中分别和ATG12、ATG8结合,激活ATG8的脂化过程[24],因此MtATG7很可能通过提高植物自噬水平,使碳/氮饥饿的耐受能力提高。在拟南芥中,ATG7和许多叶片衰老标记基因,例如MYB2NAPSAG12NYE1的表达存在明显关联性,表明ATG7也是植物叶片衰老调控的枢纽之一[25]。在碳/氮饥饿条件下,MtATG7过表达植株叶绿素含量下降的速度减慢,该结果暗示MtATG7还可能通过抑制衰老相关基因的表达,使植物叶片的衰老延迟。

      虽然MtATG7基因在参与自噬过程当中具有保守性,但是在不同植物中,自噬途径所影响的生理过程仍然存在特殊性。例如在正常生长条件下,自噬途径的缺失对拟南芥生长和繁殖几乎没有影响;但是在水稻和烟草中,自噬途径受阻会导致其育性明显降低,结实率下降,同时水稻的抽穗时间明显延迟[26-27]。因此过表达MtATG7基因在苜蓿和拟南芥中对抗逆性状的影响是否存在差异,是今后值得探究的课题。

    计量
    • 文章访问数:  1368
    • HTML全文浏览量:  2
    • PDF下载量:  1313
    • 被引次数: 0
    出版历程
    • 修回日期:  2006-04-12
    • 刊出日期:  2007-01-09

    目录

    /

    返回文章
    返回