Citation: | HAN Yuanyuan, CAO Guojun, GENG Yuhui, YE Qing, WANG Zhenhua, HUANG Yan. Effects of agricultural wastes on greenhouse gas emission and global warming potential in black soil[J]. Journal of South China Agricultural University, 2017, 38(5): 36-42. DOI: 10.7671/j.issn.1001-411X.2017.05.007 |
To study the effects of cow dung, chicken manure, and corn straw combined with chemical fertilizers on greenhouse gas emission and global warming potential.
We used the static chamber technique and set up five treatments including control, chemical fertilizers only, cow dung plus chemical fertilizers containing 50% nitrogen of the total nitrogen in the treatment, chicken manure plus chemical fertilizers with 50% nitrogen, and straw plus chemical fertilizers with 90% nitrogen. Totally 240 kg·hm–2 nitrogen was applied in each treatment except for control.
Among all treatments, the straw treatment resulted in the highest average emission flux and average total emission of CO2, being 388.96 mg·m–2·h–1 and 14 718.97 kg·hm–2 respectively. Nitrogen topdressing evidently promoted CO2 emission. The treatment of chemical fertilizers only resulted in the highest average absorption flux and average total absorption of CH4, being 0.042 mg·m–2·h–1 and 1.36 kg·hm–2 respectively, and resulted in the highest average emission flux and average total emission of N2 O, being 0.153 mg·m–2·h–1 and 5.75 kg·hm–2 respectively. The global warming potential in the straw treatment was significantly higher than those in other treatments. The global warming potential in the cow dung treatment was lower than that in the treatment of chemical fertilizers only, yet the difference was not significant.
Straw coverage can increase CO2 emission in black soil. Upland soil is an important sink of CH4 in the air. Compared with chemical fertilizers only, organic manure combined with inorganic fertilizer can reduce N2O releasing. The contributions of different agricultural wastes to atmospheric warming vary in degree.
[1] |
潘根兴, 高民, 胡国华, 等. 气候变化对中国农业生产的影响[J]. 农业环境科学学报, 2011, 30(9): 1698-1706.
|
[2] |
IPCC. Climate Change 2007 (AR4) [EB/OL]. [2016-11-10]. http://www.ipcc.ch/publications and data/publications and data reports.Shtml # 1.
|
[3] |
HOUGHTON J T, DING Y, GRIGGS D J, et al. IPCC, climate change 2001: The scientific basis[J]. Neth J Geosci, 2001, 87(3): 197-199.
|
[4] |
BELLARBY J, FOEREID B, HASTINGS A, et al. Cool farming: Climate impacts of agriculture and mitigation potential [EB/OL]. [2016-11-10]. http://hdl. handle. net/2164/2205.
|
[5] |
HANSEN J E, LACIS A A. Sun and dust versus greenhouse gases: An assessment of their relative roles in global climate change[J]. Nature, 1990, 346(6286): 713-719.
|
[6] |
KIEHL J T, TRENBERTH K E. Earth’s annual global mean energy budget[J]. B Am Meteorol Soc, 1997, 78(2): 197-208.
|
[7] |
孙永明, 李国学, 张夫道, 等. 中国农业废弃物资源化现状与发展战略[J]. 农业工程学报, 2005, 21(8): 169-173.
|
[8] |
孙振钧. 中国生物质产业及发展取向[J]. 农业工程学报, 2004, 20(5): 1-5.
|
[9] |
彭靖. 对我国农业废弃物资源化利用的思考[J]. 生态环境学报, 2009, 18(2): 794-798.
|
[10] |
叶文培, 谢小立, 王凯荣, 等. 不同时期秸秆还田对水稻生长发育及产量的影响[J]. 中国水稻科学, 2008, 22(1): 65-70.
|
[11] |
OCIO J A, BROOKES P C, JENKINSON D S. Field incorporation of straw and its effects on soil microbial biomass and soil inorganic N[J]. Soil Biol Biochem, 1991, 23(2): 171-176.
|
[12] |
VENGLOVSKY J, SASAKOVA N, PLACHA I. Pathogens and antibiotic residues in animal manures and hygienic and ecological risks related to subsequent land application[J]. Bioresour Technol, 2009, 100(22): 5386-5391.
|
[13] |
赵军, 李勇, 冉炜, 等. 有机肥替代部分化肥对稻麦轮作系统产量及土壤微生物区系的影响[J]. 南京农业大学学报, 2016, 39(4): 594-602.
|
[14] |
许仁良, 王建峰, 张国良, 等. 秸秆、有机肥及氮肥配合使用对水稻土微生物和有机质含量的影响[J]. 生态学报, 2010, 30(13): 3584-3590.
|
[15] |
秦晓波, 李玉娥, 刘克樱, 等. 不同施肥处理稻田甲烷和氧化亚氮排放特征[J]. 农业工程学报, 2006, 22(7): 143-148.
|
[16] |
闫翠萍, 张玉铭, 胡春胜, 等. 不同耕作措施下小麦–玉米轮作农田温室气体交换及其全球增温潜势[J]. 中国生态农业学报, 2016, 24(6): 704-715.
|
[17] |
秦晓波, 李玉娥, 万运帆, 等. 耕作方式和稻草还田对双季稻田CH4和N2O排放的影响[J]. 农业工程学报, 2014, 30(11): 216-224.
|
[18] |
胡腾. 黄土高原南部东小麦: 夏体闲种植体系温室气体排放与减排措施研究[D]. 杨凌: 西北农林科技大学, 2014.
|
[19] |
杨弘, 何红波, 张威, 胡国庆, 刘肖, 张旭东. 秸秆还田对农田棕壤氧化亚氮排放动态的影响[J]. 土壤通报, 2016, 47(3): 660-665.
|
[20] |
李英臣, 侯翠翠, 李勇, 等. 免耕和秸秆覆盖对农田土壤温室气体排放的影响[J]. 生态环境学报, 2014, 23(6): 1076-1083.
|
[21] |
刘田. 施加作物秸秆对棕红壤几种温室气体排放的影响[D]. 武汉: 华中农业大学, 2013.
|
[22] |
孙晓新, 牟长城, 石兰英, 等. 小兴安岭森林沼泽甲烷排放及其影响因子[J]. 植物生态学报, 2009, 33(3): 535-545.
|
[23] |
孙晓新, 牟长城, 闵长林, 等. 小兴安岭沼泽甲烷通量日变化分析[J]. 东北林业大学学报, 2009, 37(11): 92-95.
|
[24] |
高德才, 张蕾, 刘强, 等. 生物黑炭对旱地土壤CO2、CH4、N2O排放及其环境效益的影响[J]. 生态学报, 2015, 35(11): 3615-3624.
|
[25] |
翟振. 北方春玉米农田N2O排放规律及减排措施研究[D]. 北京: 中国农业科学院, 2013.
|
[26] |
宋利娜, 张玉铭, 胡春胜, 等. 华北平原高产农区冬小麦农田土壤温室气体排放及其综合温室效应[J]. 中国生态农业学报, 2013, 21(3): 297-307.
|